

Presscon Horti B.V.

- Veilingweg 25-27A
 2675 BR Honselersdijk
- +31 (0)174 64 82 92
- 🔀 info@presscon.nl
- www.presscon.nl

VERNIT - HORNIT N2(i) Expansion system

Maintenance manual

Туре	
Date	
Version / Revision	
Status	
Company	
Location	

Maintenance manual 16-08-2022

- : Version 2.0, Revision 00
- : Accepted
- : PRESSCON
- : Honselersdijk

Table of content

In	troduc	tion		5
١n	nporta	nt to	know	6
1	Pre	caut	ions and safety instructions	8
	1.1	Gen	eral safety standards	8
	1.1	.1	Working with the nitrogen generator	8
	1.1	.2	Working with the compressor	
	1.1	.3	Working with the safety valve	9
	1.2	Des	cription of hazard symbols	9
2	Sys	stem	components	
	2.1	Nitro	ogen generator PREMIUM (PLUS)	
	2.2	Nitro	ogen generator BASIC	11
	2.3	Nitro	ogen generator Premium Plus DUO	
	2.4	Con	trol Device	14
	2.4	.1	Touchscreen	14
	2.4	.2	Press-display	
	2.5	Vac	uum- overpressure safety valve and vacuum safety valve	17
	2.6	Vac	uum- overpressure safety valve with tracing band	17
	2.7	Pres	ssure sensor	
	2.8	Pres	ssure sensor with tracing ribbon	
3	Sta	rting	with maintenance	
	3.1	Mair	ntenance schedule	19
	3.2	Alar	ms	20
	3.2	.1	Actual alarms	20
	3.2	.2	Alarm history	21
4	Ge	nerat	tor	22
	4.1	Wee	ekly inspection	
	4.1	.1	Visual inspection	22
	4.1	.2	Oil- Water separator	
	4.2	Eve	ry year or every 2000 operating hours	24
	4.2	.1	Depressurize Generator	24
	4.2	.2	Checking compressed air filters	
	4.2	.3	Tightening spindles	26
	4.2	.4	Cleaning dirt trap on HORNIT	27
5	Co	mpre	SSOT	
	5.1	Che	cking condensate drain valve	
6	Saf	ety v	valve	
	6.1	Eve	ry year or after 2000 operating hours	
	6.1	.1	Checking safety valve	

6	6.2 E	/ery 2 years	31
	6.2.1	Replacing valve plates	31
7	Sense	Drs	32
7	7.1 E ^v	very year of after every 2000 operating hours	32
	7.1.1	Checking pressure measurement	32
	7.1.2	Checking water level	32
	7.1.3	Checking sensor housing	33
8	Testir	۱g	34
8	3.1 E ^v	very year or after 2000 operating hours	34
	8.1.1	Starting nitrogen production	34
	8.1.2	Check production process and operation of the valves	36
	8.1.3	Measuring flow and purity	37
	8.1.4	Checking high pressure storage tank	39
	8.1.5	Checking for leaks	40
	8.1.6	Cleaning	40
9	Final	Check	41
10	A	arms and error processing	42
1	0.1	Faults and alarms	42
1	0.2	Faults and alarm messages	43
	10.2.	Fault and alarm messages for the PressControl (JGA2027) (Premium (plus) and Premium plus DUO)	43
	10.2.2	2 Fault and alarm messages for the Touchscreen (JGA1085)	47
	10.2.3	Fault and alarm messages for the PressControl (JGA0953) (Premium (plus) and Premium plus DUO)	48
	10.2.4	Fault and alarm messages for the Touchscreen (JGA1085)	50
	10.2.8	5 Fault and alarm messages for the PRESS-Basic control (Basic)	51
1	0.3	Overriding the boiler alarm relay	52
11	W	arranty	53
12	A	opendix	54
13	D	ocument history	55
14	То	o conclude	56
Ар	pendix	A: Touchscreen	57
1	. M	ain screen of the Touchscreen	57
	1.1	Main screen lay-out VERNIT	58
	1.2	Main screen lay-out HORNIT	58
2	2. Ic	ons on the main screen	59
	2.1	Compressor	59
	2.2	PSA generator	59
	2.3	Oxygen sensor	60
	2.4	Valves	60
	2.5	Overpressure safety relief	60

2	.6	VERNIT tank malfunction status	61
2	.7	VERNIT tank water level status	61
2	.8	HORNIT tank malfunction status	62
2	.9	HORNIT tank water level status	62
2	.10	HORNIT pressure tank failure status	63
2	.11	HORNIT pressure tank water level status	63
3.	U	lser menu	64
3	.1	User menu schematic for touchscreen type (Premium (plus) and Premium Plus DUO)	64
3	.2	User menu description	65
4.	S	ervice menu	66
5.	Fa	actory menu	66
6.	S	tandby	66
Apper	ndix	B: PRESS-display	67
1.	В	uttons on the PRESS-display	67
2.	Μ	lenu structure and access	68
3.	U	lser Menu	68
3	.1	User menu for the VERNIT Basic systems	69
4.	S	ervice Information screen	70
4	.1	Service information screen for the VERNIT Basic systems	70
5.	Fa	actory information screen	71
5	.1	Factory information screen for the VERNIT Basic systems	71
6.	S	ervice menu	72
7.	Fa	actory menu	72
8.	S	tandby	72

Introduction

This manual is intended to support you while performing maintenance on the PRESSCON nitrogen expansion system. The manual applies to the nitrogen expansion systems delivered from 2012 onwards. Each expansion system includes a compressed air supply. The expansion system is connected to a separate compressor or to the existing compressed air supply. The general instructions for maintaining the separate compressor or compressed air supply are not described in this manual. Please refer to the related manuals of the compressors themselves. However, this manual does cover some exceptions for compressors supplied in combination with an expansion system.

The expansion system monitors and controls the nitrogen pressure prevailing in the expansion chamber of a central heating system. It is applicable to central heating systems in the horticultural industry. The system consists of a nitrogen generator with a compressed air compressor, a set of pressure sensors that measure the water level and pressure at the top of a buffer tank, and a control module that controls the nitrogen generator.

Central heating systems in the horticultural industry store their heat in a vertical or horizontal buffer tank. The buffer tanks are not completely filled with water but there is an expansion space above the water. In a vertical buffer tank, this space is directly above the water in the tank. In a horizontal heat storage tank, the expansion space is also located directly above the water in the heat storage tank, but it can also be located in a separate expansion tank. The expansion tank is designed to give the water in the central heating system room to expand and contract as the water heats up or cools down. When this happens, the pressure in the expansion chamber also changes.

The expansion system monitors the pressure in the expansion chamber. When the pressure gets too high a pressure relief valve lets the extra air escape. If the pressure gets too low, then the expansion system supplies nitrogen to bring the expansion chamber back to pressure. The nitrogen generator of the expansion system supplies an air mixture with a nitrogen concentration of 99.0 vol. % N2. The system uses nitrogen because it is an inert gas. Inert gas has the property of preventing rust at high concentration. The expansion system always ensures that a blanket of nitrogen is present in the expansion chamber within the buffer tank and that it is kept at a constant overpressure.

In addition to pressure management of the nitrogen blanket, the expansion system is also a monitoring device for the water level in the buffer tank. By using pressure sensors, the system determines the height of the water level. Once the water level becomes too high or too low, the expansion system will generate the appropriate error or alarm message and can also send a stop signal to other relevant devices. Water level monitoring is important for maintaining the buffer tank. It prevents the water level from getting too high and causing damage to the roof of the buffer tank. It also prevents the water level from getting too air in the heat supply nozzle and in the central heating network.

These are important features for maintaining the buffer tank and maintaining the central heating system.

Important to know

The expansion systems are made in 2 different types. Namely the VERNIT and HORNIT systems. These 2 types have the following differences.

- VERNIT, the expansion system regulates the pressure of the nitrogen blanket in the vertical heat storage tank.
- HORNIT, the expansion system regulates the total system pressure in a horizontal heat storage tank. This is done directly or through an external expansion tank.

In addition to VERNIT and HORNIT, there are some additional designations that define the function of the expansion system. These are:

2.0 - 30.0	The number in the type designation indicates the capacity of the nitrogen generator. This number represents the flow rate in m ³ /h that the generator can produce with a purity of 99.0 Vol%N2. The smallest capacity per generator is 2.0 m ³ /h and the largest possible capacity is 30.0 m ³ /h. Larger capacities are also possible but then several nitrogen generators should be combined with each other.
H.P.	"High Performance" stands for the design of the PSA tube. Indicates that the PSA applied to the system is manufactured by PRESSCON. Nitrogen generators manufactured before 2009 do not have this addition.
N2i	N2i stands for direct injection of nitrogen. So, the expansion system in this case will directly inject nitrogen into the heat storage tank.
N2	N2 without the "i" stands for an expansion system without direct injection. In this case, the expansion system uses a separate pressure vessel in which the nitrogen is first stored before being blown into the heat storage tank.
Basic	The Basic generators are equipped with a basic version of the control panels and include a Press display.
Premium and premium plus	The Premium and Premium Plus generators are equipped with an extended version of the control panels and include a touchscreen display.
Premium plus DUO	DUO means that the expansion system is suitable for monitoring 2 separate heat storage tanks.
ELC	The expansion system is prepared to operate in an Equal Level Control setup. This function provides control of the level difference in two tanks by means of controlling a pump. For this purpose, the expansion system will work together with a 1 or more expansion systems via CAN bus.
SLC	The expansion system is prepared to apply the Switching Level Control function. This function generates a switching signal based on the level difference in two tanks. For this purpose, the expansion system will work together with one or more expansion systems via CAN-bus.
SLDM	Leakage detection measurement working on the basis of a 3rd pressure sensor at the bottom of the vertical buffer tank.
CLDM	Leak detection measurement that works on the basis of information that the system receives from the horticultural computer. The horticultural computer then indicates the filling of the vertical buffer tank.

	VERNIT	HORNIT	N2i	N2	Premium	Premium plus	Basic	ELC / SLC	SLDM / CLDM
VERNIT	NA	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HORNIT	NA	NA	Yes	Yes	Yes	Yes	No	No	No
N2i	Yes	Yes	NA	NA	Yes	Yes	Yes	Yes	Yes
N2	Yes	Yes	NA	NA	Yes	Yes	Yes	Yes	Yes
Premium	Yes	Yes	Yes	Yes	NA	NA	NA	No	Yes
Premium plus	Yes	Yes	Yes	Yes	NA	NA	NA	Yes	Yes
Basic	Yes	No	Yes	Yes	NA	NA	NA	No	No
ELC / SLC	Yes	No	Yes	Yes	No	Yes	No	NA	Yes
SLDM / CLDM	Yes	No	Yes	Yes	Yes	Yes	No	Yes	NA

The type designations described above are compatible with each other according to the matrix below.

Touchscreen and PRESS-Display

The touchscreen and the PRESS display are both control units that can be used for the PRESSCON nitrogen generators. Originally the PRESS-Display was conceived as a multi-purpose digital screen on which the water level, the pressure of the nitrogen blanket and possible alarms could be displayed. The Touchscreen also fulfils these functions but offers more visual overview of the system and more intuitive controls. Also, the Touchscreen is universally usable for several types of nitrogen generators.

- The Touchscreen is used as standard for the VERNIT HORNIT Premium (plus) and Premium plus DUO types. Optionally this display could also be applied on a VERNIT Basic.
- The PRESS display is used as standard for the VERNIT Basic.

If 2 or more expansion systems are connected to each other via CAN-bus, it is important that the displays within that network are all of the same type. Touchscreen and PRESS display do not work together within a CAN-bus network. This could occur for example in an ELC setup.

1 Precautions and safety instructions

1.1 General safety standards

When working with the PRESSCON expansion system, there are some safety risks that must be considered. The risks involve subjects such as dangerous voltage, high pressure and dangerous gas to inhale. These are further explained in this chapter. It is highly recommended that the safety risks are observed before work on the devices is commenced. The safety risks in this chapter are divided amongst the different components of the system. For more information on the composition of the components, is referred to chapter 2 System components.

1.1.1 Working with the nitrogen generator

The nitrogen generator is commonly located in the technical room of the facility. When operating or when working on the nitrogen generator, the following hazards should be considered.

Symbol	Description	Applies to
•	HIGH PRESSURE, Relief pressure	The external components of the nitrogen generator which
Λ	from components before work is	are:
/¢\	conducted.	Valves;
<u> </u>		 Hoses;
		PSA vessels.
	DANGEROUS VOLTAGE,	All components that are connected to the control cabinet.
^		Applied voltages are:
	Forbidden to work on the system if	• 24V AC;
17	the power is on.	• 24V DC;
		• 230V AC;
		• 380V AC.
	DANGEROUS TO INHALE GAS,	The nitrogen output connection. The mixture that is produced
~		by the nitrogen generator consists for 99% out of nitrogen.
	Avoid the specified area to prevent	Breathing this in directly from the output tube could cause
	risk of health.	suffocation. However, the nitrogen evaporates quickly thus
		poses no significant health risk at a distance of >0.5m from
		the nitrogen output connection.

1.1.2 Working with the compressor

To work safely and responsibly with the compressor, it is recommended to carefully read the maintenance manual of the concerning device. Please also take note of the hazard symbols and safety features. In addition to the ones that are described in this manual, the manufacturer of the compressor can use different symbols. When operating or working with the compressor, the following hazards should at least be considered.

Symbol	Description	Applies to
À	HIGH PRESSURE, Relief pressure from components before work is conducted.	The external and internal components of the compressor which are: Compressed air HP vessel; Tubing, filters, oil barrel; Compressor block.
	OVERPRESSURE VALVE, Be aware of the sudden relief of overpressure.	The compressed air HP vessel which has an overpressure valve of 10 Bar. The overpressure valve can relief its pressure suddenly.
Æ	DANGEROUS VOLTAGE, Forbidden to work on the system if the power is on.	All internal components of the compressor. Applied voltages are: • 230V AC; • 380V AC.
	MOVING PARTS AND ROTAGING FAN, Risk of getting stuck or injuries to limbs. Turn the machine off completely before working on it.	All internal components of the compressor which consist out of some rotating and moving parts.
	For the precautions and safety instructions and safety instructions of the compres or in the control panel of the nitrogen	ctions of the compressor, PRESSCON also refers to the sor manufacturer. These can be found with the compressor generator.

1.1.3 Working with the safety valve

The safety valve is commonly located on the roof of the buffer tank. When working on the safety valve, the following hazards should be considered.

Symbol	Description	Applies to
	HOT PARTS, Do not touch parts with bare hands. Use heat-resistant clothing.	The housing of the safety valve and relieved nitrogen from the buffer tank. The upper layer of water can heat up the nitrogen in the safety valve. The housing can then be too hot to touch. The relieved nitrogen from the vacuum- overpressure safety valve on top of a vertical buffer tank can also contain steam with a temperature of 90°C which could cause burn injury. Vacuum safety valves on the horizontal buffer tanks do not release nitrogen.
	ATTENTION! WORKING AT HIGHTS,	Working on the roof of a vertical or horizontal buffer tank is considered working at heights. Fall protection is mandatory when working on the safety valve.
A	HIGH PRESSURE, Relief pressure from components before work is conducted.	The safety valves on both the vertical and horizontal buffer tanks. The safety valve on a vertical buffer tank can be depressurized by hand. The pressure is not higher than 28 mBar. The safety valve on a horizontal buffer tank can only be depressurized by relieving water pressure for the buffer tank. The pressure is not higher than 1200 mBar.

1.2 Description of hazard symbols

In addition to the identified risks for the nitrogen generator, compressor and safety valve, the following symbols can also be applied. When a hazard symbol is encountered, please observe its meaning carefully before further commencing the work.

Symbol	Description	Symbol	Description
	1. OVERPRESSURE VALVE, Be aware of the sudden relief of overpressure.	A	7. HIGH PRESSURE, Relief pressure from components before work is conducted.
\bigtriangleup	2. DANGEROUS VOLTAGE, Forbidden to work on the system if the power is on.		8. HOT PARTS, Do not touch parts with bare hands. Use heat-resistant clothing.
	3. DANGEROUS TO INHALE GAS, Avoid the specified area or wear appropriate breathing equipment.		9. MOVING PARTS, Risk of getting stuck or injuries to limbs. Turn the machine off completely before working on it.
	4. NOISE, Wear ear protection to prevent hearing damage.		10. ROTATING FAN, Risk of getting stuck or injuries to limbs. Turn the machine off completely before working on it.
\bigtriangleup	5.MACHINE WITH AUTOMATIC START, Machine stops and starts automatically when it is operating normally. Turn off the machine completely before working on it.		11. ATTENTION, Special situation occurs, follow additional instructions.
	6. READ THE OPERATING AND MAINTENANCE INSTRUCTIONS, It is advised that the maintenance instructions are read before continuing work.		

2 System components

The PRESSCON expansion systems consist out of the following components: a nitrogen generator, compressor, safety valve and 2 or more pressure sensors. This chapter describes these components by giving an image of each device and by numbering the most important parts. The compressor is not described because different brands and types can be applied, and it is delivered with its own manual.

2.1 Nitrogen generator PREMIUM (PLUS)

2.2 Nitrogen generator BASIC N2 system

N2 system

2.3 Nitrogen generator Premium Plus DUO

1.A 1.B 12. . 5.A PR SSCON 15. Figure 5. N2 Premium Plus DUO system

N2i system

Legend Legend for nitrogen generators of types: Premium (plus), Basic, Premium Plus DUO.

No.	Description	Function
1.	Nitrogen output connection	Tube which puts out the nitrogen mixture that is produced by the nitrogen generator. This outlet will be connected to the piping that runs to the buffer tank. Please note that this connection is located differently when comparing the N2 and N2i systems. Also note that the N2 and DUO systems have solenoid valves in the tubing while the N2i systems do not.
1.A/B	Nitrogen inlet tank 1 and tank 2	Same connection as the standard Nitrogen output connection. Connection 1.A is used for supplying nitrogen to tank 1 and connection 1.B is used for supplying nitrogen to tank 2.
2.	Nitrogen HP vessel connection	Tube which puts out the nitrogen mixture that is produced by the nitrogen generator. This outlet is specially fitted for connecting a nitrogen HP vessel.
3.	PSA vessels	High pressure vessels with active carbon inside. The Pressure Swing Adsorption process takes place within these vessels to generate nitrogen.
4.	Digital nitrogen HP vessel pressure regulator.	Digital pressure switch with a start and stop setting. At default, the pressure regulator will generate a start signal below 4.0 Bar. At 6.5 Bar, the signal will turn off and the text on the display will turn green. If the pressure then drops below 4.0 Bar, the text on the display will turn red and a new start signal is generated.
5.A	Touchscreen	The touchscreen. Standard for Premium (plus) and Premium Plus DUO systems. This is the main control device for reading the statuses and values of the system. The touchscreen is used for navigating and adjusting settings.
5.B	PRESS-display	LCD display with buttons. Standard for the Basic systems. This is the main control device for reading the statuses and values of the system. The buttons are used for navigating and adjusting settings.
6.	Control cabinet	Control cabinet containing all the electronic components needed to manage the nitrogen generator, compressor and sensor measurements of 1 buffer tank. This type of control cabinet has enough space for all standard components and additional components required for any further expansion of the control cabinet.
7.	Compressed air regulator	Composition of pressure control valve and pressure switch. The maximum air
	and pressure switch	pressure for the nitrogen generator is manually setup by adjusting the pressure control valve. The pressure switch notifies the system if there is a pressure drop.
8.	Compressed air inlet	Push-in connection that is used for connecting the compressor to the nitrogen generator. This is commonly done with a 16mm air hose.
9.	PSA control manifold	A pneumatically controlled manifold block that regulates the flow of air and nitrogen during the Pressure Swing Adsorption process.
10.	Compressed air filters	2 Filters that filter out dirt and moisture that comes with the compressed air.
11.	Nitrogen inlet manifold	A pneumatically controlled manifold block that regulates the flow of nitrogen to the nitrogen storage vessel and one or two buffer tanks.
12.	PSA pressure gauges	0 - 10 bar (0,0 - 1,0 MPa) pressure gauges that indicate the pressure within the PSA vessels. The left pressure gauge is for the left PSA vessel and the right pressure gauge is for the right pressure vessel.
13.	Adjustable pressure switch	Pressure gauge to set minimum compressed air pressure.
14.	Filter air vent	Air vent to depressurize filters.
15.	Pressure relief device	Safety valve to prevent the system from being under too much pressure.

2.4 Control Device

Depending on the type of expansion system, the installation has a "Touchscreen" or a "Press display" as a control device with which the expansion system can be operated.

Control device	Description
Touchscreen	The touchscreen. Standard for Premium (plus) and Premium Plus DUO systems. This is the main control device for reading the statuses and values of the system. The touchscreen is used for payingting and adjusting settings
PRESS-display	LCD display with buttons. Standard for the Basic systems. This is the main control device for reading the statuses and values of the system. The buttons are used for navigating and adjusting the settings.

2.4.1 Touchscreen

The Touchscreen is the main control device for reading the statuses and readings of the system. The Touchscreen has no physical keys but only digital keys on the screen. Touching the keys and the images on the screen can be used to navigate through and adjust settings. The table below shows the touchscreen keys.

Main screen of the Touchscreen:

Every button has a different function, some of them have several functions. The following table describes which function each button has.

Button	Description											
	This button is only displayed in the main menu and guides you to the following functions:											
Menu	User : User menu Service : Service menu											
	Factory : Factory menu											
Alarm	 Press the button to view the current fault and alarm messages. Press the button for more than 3 seconds to view the alarm log. 											
Info	 Pressing this button calls up the information screen. Specific information is displayed in here for each component as well as the current status. The same menu for a specific component can also be accessed by pressing the relevant icon in the menu screen. 											
Esc	 This button is in every menu and returns you to the previous menu. 											

When the "menu" option is pressed, the following menus can be selected.

Button	Description
User	 The user menu is accessible to everyone. This contains setting which the user can change.
Service	 The service menu is only accessible via a code. Service information can be requested via this menu.
Factory	 The service menu is only accessible via a code. Factory settings can be entered from this menu.

Main screen lay-out VERNIT:

The structure of the menu is based on the type of system the user has. Press the icons to find out the status of this system.

Figure 7. VERNIT 2.0 – 30.0 N2(i) DUO system overview (Only when the VERNIT is installed)

Main screen lay-out HORNIT:

Figure 8. HORNIT 2.0 – 30.0 N2(i) DUO system overview (Only when the HORNIT is installed)

2.4.2 Press-display

The PRESS-display is the monitoring device for reading the statuses and measured values of the system. The buttons are used to navigate and adjust the settings. Figure 9 below shows a schematic view of the PRESS-display.

Figure 9. Schematic view of Press-display

Buttons on the PRESS-display

Each button has a different function, some have more than one. The following table describes which function each button has.

Button	Description									
Reset	This button has a light beneath it, when it lights up, this means the following:Light on: An error or alarm has been detected;Light flashes: There is a new error or a new alarm.With this button, you can reset an error or alarm message as soon as the problem that caused the message has been solved.									
Alarm	 Press the button once to view the current errors and alarm messages. Press and hold for 3 seconds to view the error and alarm log. 									
	 From the main screen: Press the button once to enter the Service menu. An access code is required. Press and hold for 3 seconds to view the factory menu. An access code is required. 									
Prog	 Adjusting a setting in one of the menus: In the user menu: press and hold this button for 3 seconds. The setting will flash and is then adjustable. In the service menu and factory menu: press this button once briefly. The setting will flash and is then adjustable. 									
Info	 Press this button once briefly to view the service information screen. Press and hold for 3 seconds to view the factory information screen. 									
Esc	 Press this button once briefly, in one of the menus or information screens, to go back one screen and then return to the main screen. Press this button once briefly while adjusting a setting. The adjustment will be cancelled. 									
+	 Press this button once briefly in one of the menus to select the next screen. Press this button when setting a value to increase the value. 									
-	 Press this button once briefly in one of the menus to select the previous screen. Press this button when setting a value to decrease the value. 									

2.5 Vacuum- overpressure safety valve and vacuum safety valve

The safety device is attached on top of the buffer tank and ensures that the buffer tank is protected against too high overpressure and too low under pressure.

Figure 10. PV 80/25/20-2, PV 150/25/20-2, PV 200/25/20-2 (VERNIT systems)

Figure 11. PV 50-2F, PV 80-2F, PV 100-2F. (HORNIT systems)

Legend

Legend for the safety valves of the types: PV 80/25/20-2, PV 150/25/20-2, PV 200/25/20-2, PV 50-2F, PV 80-2F, PV 100-2F.

Ref. No.	Description	Function
1.	Maximum overpressure valve	A mechanically operating valve plate with calibrated lead or stainless-steel weights that relieves nitrogen at the maximum allowed pressure. It is protected with an additional cover.
2.	Operating overpressure valve	A mechanically operating valve plate with calibrated lead or stainless-steel weights that relieves nitrogen at the maximum operating pressure. It is protected with an additional cover.
3.	Safety valve housing	Assembly housing that holds the vacuum valve and overpressure valves.
4.	Vacuum pressure valve	A mechanically operating valve plate without lead or stainless-steel weights that is lifted when a vacuum occurs.

2.6 Vacuum- overpressure safety valve with tracing band

For cold environments it is possible to install tracing ribbon around the vacuum- overpressure safety valve to prevent it from freezing. Although the safety valve is designed to withstand a certain level of frost, the additional tracing ribbon is an optional feature that is advisable for environments with long periods of frost.

	• Figure 12. Vacuum- overpressure safety valve										
Ref. No.	Description	Function									
5.	Tracing band	Band that is heated when powered with electricity.									
6.	Thermostat	Thermostat that monitors the surrounding temperature at the sensor and activates the tracing ribbon when the temperature becomes too low.									
7.	Insulation material	Insulation material that prevents the loss of heat that is generated by the tracing band. By preventing loss of heat to the surrounding, more heat is induced into the safety valve.									
8.	Finishing plating	Plating that keeps the tracing band and insulation material in place and protects them against external influence.									

2.7 Pressure sensor

Figure 13. Sensor 0-600mBar, 0-1000mBar, 0-1500mBar, 0-1600mBar, 0-2500mBar.

Legend

Legend for the pressure sensors of the types: 0-600mBar, 0-1000mBar, 0-1600mBar, 0-2500mBar,

Ref. No.	Description	Function
1.	Protection cap cover	Plastic cover that slides over the pressure sensor. It clamps onto the protection cap sensor holder.
2.	Pressure sensor	Electrical transmitter that translates a pressure measurement into a readable 420mA signal over a 2-wire connection.
3.	Rubber ring	Rubber ring that seals leakage from air and water between the pressor sensor and protection cap of the sensor.
4.	Protection cap sensor holder	Plastic isolated holder with tubing that holds the pressure sensor. The sensor holder functions as additional protection against heat and moisture. It also allows the pressure sensor to be easily exchanged.
5.	Threaded end of sensor cap	1/2" threaded end through which the protection cap is fitted onto the buffer tank.
6.	Welded threaded socket	1/2" Socket that is welded onto the buffer tank and in which the pressure sensor protection cap is fitted. (Fitted by a third-party company).

2.8 Pressure sensor with tracing ribbon

For cold environments it is possible to install tracing ribbon around the sensor to prevent it from freezing. Although the protection cap of the sensor can protect the sensor against freezing to a certain level, the additional tracing ribbon is an optional feature that is advisable for environments with long periods of frost.

Figure 14. Sensor with tracing ribbon

Legend		
Ref. No.	Description	Function
7.	Tracing ribbon	Ribbon that is heated when powered with electricity.
8.	Thermostat	Thermostat that monitors the surrounding temperature at the sensor and activates the tracing ribbon when the temperature becomes too low.

PRESSCON

PRESSCON

3 Starting with maintenance

3.1 Maintenance schedule

To continue to ensure proper operation, the expansion system should be maintained on a regular basis in accordance with the regulations. Part of the maintenance, the weekly checks, can be carried out by the user or his technical staff. The remaining maintenance must be carried out by a competent installer trained by the manufacturer with a certificate of approval. The expansion system is maintained using the maintenance schedule below. The schedule assumes that a system runs for an average of 2000 operating hours per year.

Activity	To be done by	Weekly	Each year or every 2.000	Every 2 years or every 4.000
			hours	hours
Nitrogen generator				
Visual inspection	Owner/user	X		
Tightening PSA spindles	Service engineer		X	
Clean dirt catcher	Service engineer		X	
Check and replace compressed air filters	Service engineer		X	
Check output flow and purity	Service engineer		X	
Adjusting the generator	Service engineer		X	
Production process and valve operation check	Service engineer		X	
Check high pressure supply vessel	Service engineer		X	
Check for leakage	Service engineer		X	
Cleaning	Service engineer		X	
Sensors				
Check water level	Service engineer		X	
Check pressure measurement	Service engineer		X	
Check sensor covers	Service engineer		X	
Vacuum- overpressure safety v	alve (VERNIT systems)			
Check safety valve(s)	Service engineer		X	
Revision safety valve	Service engineer			X
Vacuum safety valve (HORNIT s	systems) *			
Check safety valve(s)	Service engineer		X	
Revision safety valve	Mechanic/factory			X
Compressor**				
Change oil			X	
Check condensation drain valve			Х	
Replace thermostat				Х
Replace V-belt				8.000H

* The overhaul of the vacuum safety valve for HORNIT systems must be performed at the PRESSCON factory. The used safety valve can be exchanged directly with a reconditioned safety valve. Replacement of the vacuum safety valve on the horizontal buffer tank must be performed by a licensed installer who can safely vent the pressure from the storage tank and the safety valve.

** Although the expansion system is generally provided with an assigned compressor, the maintenance instructions are different for each type and brand of machine. The maintenance instructions for the compressor are described in the user manual which is supplied as a separate document together with the compressor.

3.2 Alarms

Maintenance begins with the analysis of the alarms. By determine which alarms have occurred and which are active can be decided if extra repairs are necessary besides the standard maintenance.

3.2.1 Actual alarms

If the system is in alarm, the red button at the display starts flashing. Also, the message 'Warning' or 'alarm notification' will be displayed at the main screen. To see a description of the actual alarms, the alarm menu can be loaded. (For all possible notifications and their descriptions, see 10.2 Faults and alarm messages).

Main screen > 1x short Alarm > > Alarm me	nu
---	----

Press-display

> F -	> 1	8	C S	O y	N S	T t	R e	O e	L m	d	r	< u	< k	m	i	n	1
														(

When an error is solved, the system can be reset by pressing Reset .

If the system is in alarm, the alarm must first be resolved. The system should be fault-free for the start of the maintenance.

During the maintenance, other notifications can occur. This will primarily be due to the venting of the various components.

Alarms that can occur include: 'Minimal pressure' or 'Compressor out of compressed air'. Alarms such as these transmit

a message to the collective if it is connected. Afterwards, these alarms can be cancelled via the Reset button. Alarms that can block a boiler or CHP do not occur during the service maintenance.

3.2.2 Alarm history

To see all alarms that the system ever had, the alarm log menu can be called up. In this menu the time and date of every notification is shown.

Touchscreen

Alarms log Tank 1		
Faults	<u>Device</u>	<u>Date & Time</u>
Errors reset	Control tank 1	13/05 07:27
F090 Compressed air too low	Control tank 1	12/05 14:57

Press-display

		r	,															
1	2	1	0	0	,		0	1	1	0	1							1
F	1	8		S	У	S	t	е	е	m	d	r	u	k	m	i.	n	
-																		
-																		

By using the + and -, you can walk through the alarm log. In this way, you can look further into the history of the alarms. See 10.2 Faults and alarm messages for a description of all possible alarm notifications.

Every notification from the alarm history needs to be evaluated and fixed before the maintenance can be carried out. It is possible that a message from the alarm history is fixed already. In that case, it must be known in the history of the maintenance.

4 Generator

4.1 Weekly inspection

This part of the maintenance should preferably be carried out weekly by the user:

- Visual inspection;
- Empty oil- water separator.

4.1.1 Visual inspection

To ensure that the expansion system functions as well as possible, it is advisable to check the generator and compressor regularly by means of a brief visual inspection. This will allow any defects to be recognized in time. During this inspection, pay attention to the following points:

- 1. Is the system free of alarms? When an alarm occurs, a red light on the display will flash. Is there an alarm? Ask PRESSCON for help and instructions if needed.
- 2. Are there no air leaks? The generator vents the PSA regularly during the nitrogen production but may not have a constant air leakage.
- 3. Is the water level ok? Check if the water level on the display corresponds with the percentage of heat in the heat storage tank. For this purpose, a sticker is present on the side of the cabinet where instructions are present and the ratio between temperature and water level can be read.

4.1.2 Oil- Water separator

The Oil- Water Separators catches the moisture of the nitrogen generator. The nitrogen generator is equipped with an electrically controlled blowdown valve which uses overpressure to blow off excess moisture. The excess moisture will be caught by the oil- water separator. Depending on the type of oil- water separator, maintenance actions may be necessary. Presscon's expansion system generally comes with one of the following three different types of oil- water separator. These types are shown from old to new in Figure 15, Figure 16 and Figure 17. Each type requires a different maintenance action.

Figure 15. Oil Water separator

Figure 16. Oil Water separator type with filters

Figure 17. Oil- water separator with sample bottle

The type of oil- water separator shown in Figure 15 should be checked regularly to ensure that the oil- water separator is not overfilled, and if necessary it should be emptied. Proceed as follows to drain the oil / water separator:

- 1. Disconnect the supply hose from the separator (Figure 15 no. 1).
- 2. Also disconnect the drain hose from the separator (Figure 15 no. 2).
- 3. Unscrew the red cover (Figure 15 no. 3).
- 4. If the oil- water separator is as high or higher than the outlet connection, (Figure 15 no. 2) the oil- water separator must be emptied.
- 5. Drain the dirty oil- water mixture in a responsible manner. Use a jerrycan to take it with you if there is not a suitable drain.
- 6. Make sure the inlet and outlet ports are not clogged (Figure 15 No. 1 & 2). If necessary, use compressed air to blow it clean. Or use a long thin object to puncture the blockage.
- 7. Clean the oil- water separator by using a cloth.
- 8. Tighten the red cover and reconnect the blowdown and drain hoses.

The type of oil- water separator shown in Figure 16 contains 2 filters which must be replaced as soon as they become saturated/contaminated. This must be checked by means of a visual inspection.

- 1. Loosen the five cover fixing screws (Figure 18).
- 2. Remove the cover.
- 3. Check the filters in the oil-water separator.
- 4. Replace the cover and tighten the five mounting screws.

Figure 18. Oil- water seperator type with filters

The oil- water separator type shown in Figure 17 should be checked regularly by taking a sample. Checking the water quality of the oil-water separator:

- 1. Take out the sample bottle from the top of the oil- water separator.
- 2. Open the test relief valve at the front of the oil- water separator.
- 3. Apply the sample bottle to the relief valve and take a water sample:

Figure 19. Oil- water separator with sample bottle

- If the water is up to 20 ppm, the quality of the condensate is OK.
- If the water exceeds 20 ppm (milk color), the quality is no longer OK.
- 4. If the quality is not OK, the oil- water separator should be replaced with a new oil- water separator.

4.2 Every year or every 2000 operating hours

This part of the maintenance must be carried out by authorized specialists:

- Depressurize Generator
- Replace compressed air filters
- Tightening spindles
- Cleaning the dirt trap

4.2.1 Depressurize Generator

Depressurizing the nitrogen generator is necessary to work safely on the nitrogen generator. The pressure on the components of the generator can be up to 10 bar, which causes an increased safety risk. Before the generator can get depressurized, it first must be put in stand-by mode. This means that the system is not producing nitrogen anymore. By keeping a close eye on the pressure gauges (Figure 20 no. 1 & 2) on the nitrogen generator, it can be checked if the machine is in stand-by mode. When both pressure gauges are showing the same pressure (± 3bar) and not decrease or increase, the nitrogen generator is in stand-by mode.

If the production of nitrogen is still active, the nitrogen generator can be put in stand-by mode manually, for that the next steps must be completed:

Because the nominal values cannot be set lower than the minimum pressure value, the nominal value will not get any lower than 2 mbar. This is enough.

- 2. After adjusting the nominal pressure, it takes around 1 minute before the nitrogen generator finished its cycles and will stop producing nitrogen.
- 3. In case of a pressure vessel, the valve to this vessel needs to be closed.
- 4. Both pressure gauges (Figure 20 no. 1 & 2) on the nitrogen generator will drop back to ± 3 bar and will not increase or decrease. The generator is in stand-by mode.

Figure 20. Pressure gauges on nitrogen generator

When the nitrogen generator is in stand-by mode, the machine can be vented.

- 1 Do this by opening 2 of the 3 control valves (valves 1 and 2) manually at the same time, as shown at Figure 21 no. 3. Keep the control valves open until both pressure gauges are dropped to ± 0,5 bar. The pressure can't get any lower.
- 2 Now close the ball valve on the compressor (Figure 22 no. 1).
- 3 Make sure that the ball valve at the bottom of the nitrogen generator is closed (Figure 23 no. 5).
- 4 Remove the cover (Figure 23 no. 4) at the bottom of the generator with a hex key and open the ball valve slowly (Figure 23 no. 5) so that the remaining pressure gets relieved slowly.
- 5 By loosen the flushing tube (Figure 24 no. 6), the final 0.5 bar can also be vented. The flushing tube is connected with a push-in coupling, this can be loosened by hand. After this, the nitrogen generator is fully vented and repairs or maintenance under pressure-free conditions can be performed.

Depressurizing the generator could cause a 'compressor compressed air' alarm. This alarm can be corrected by pressing the reset button when the generator is supplied with compressed air.

Figure 24. Flush tubing

Figure 22. Compressor ball valve

4.2.2 Checking compressed air filters

Depending on the year of manufacture and version of the PRESSCON expansion system, compressed air filters of different brands may be installed. The compressed air filter sits between the compressor and the nitrogen generator. They ensure that the compressed air arrives dry and clean at the nitrogen generator.

The service life of a filter element varies from brand to brand, but in most cases, they should be replaced annually to ensure proper operation. The SMC AFF and SMC AMH filters are equipped with a filter element indicator on the filter housing. When these turn red, the filter elements must be replaced.

Proceed as follows to replace a filter element:

- Disconnect the drain hose below both filters (Figure 25 no. 1). 1.
- Unscrew the bottom half of the filters gently (Figure 25 no. 2), if necessary, use a strap wrench. 2.
- If there are filters of the brand SMC mounted, use a hex key to loosen the lower half of the filter housing. Loosen the filter elements by hand.
- 3.
- Mount new filter elements and put the filter housing back together (Figure 25 no. 2). 4.
- Connect the drain hoses again (Figure 25 no. 1). 5.

Figure 26. Spindles

4.2.3 Tightening spindles

When the spindles are getting tightened, the generator first needs to be depressurized. If this is not the case, follow the instructions in 4.2.1 depressurize generator

Each HPSA has a spindle. This spindle is a large set screw that makes sure that the coal package in the PSA is firmly held in place. Check the spindle on basis of the follow steps:

- Remove the blanking plug (Figure 26 no. 1) at the top of the PSA with a 12mm hex key. 1.
- 2. Use a 17mm hex key to turn the spindle tight. The spindle must be tightened with a torque of 80N/m.

PRESSCON

4.2.4 Cleaning dirt trap on HORNIT

NOTE: Only in the case of a Hornit type expansion system is there a dirt trap attached to the expansion system. In most cases it is only on the compressor.

Not only the compressor but also the nitrogen generator can be provided with a dirt trap. Whether it is mounted, and where it is mounted varies per system. A dirt trap can, for example after an error on the system be placed, but also during the production. A dirt trap occurs among others on the next places:

- In the blow- off pipe of a HORNIT N2 expansion system.
- In de blow-in pipe of a VERNIT/HORNIT NCT expansion system.

All dirt traps must be cleaned every year. Do this by following these steps:

- 1. Open the dirt trap to unscrew it at the bottom side (Figure 27 no. 2).
- 2. Clean the gauze of the dirt trap well and remove any remaining dirt from the housing of the dirt trap.
- 3. Mount the gauze and the cap back on when they are completely clean.

Figure 27. Dirt trap expansion system

5 Compressor

The compressors that are provided in combination with a PRESSCON expansion system are equipped with some additional components and are used in a special way. Therefore, some extra maintenance instructions arisen that are not listed in the default compressor manuals and therefore they are included in this manual.

In addition to the standard maintenance instructions, PRESSCON advises to observe the following points. The condensate drain valve is covered in this manual because it is a component that is provided by PRESSCON. For replacing the thermostat and the fan belt PRESSCON advises to handle the maintenance intervals below.

Part	Interval	Instructions
Check Condensate drain valve	Every year or every 2000 operating hours	Perform according to instructions in this manual.
Replacing thermostat	Every 4000 operating hours	Perform according to instructions from the relevant compressor instructions.
Replacing V-belt	Every 8000 operating hours	Perform according to instructions from the relevant compressor instructions.

5.1 Checking condensate drain valve

The compressors that are provided in combination with an expansion system, will be equipped with an extra condensate water discharge valve (condensate drain valve). The valve makes sure that the condensate is drained regularly while the nitrogen production is still active. For the electric relief valve, a dirt trap is mounted. The valve and the dirt trap must be in good condition.

The condensate drain valve on the compressor can be connected in two ways:

- To the expansion system;
- On the compressor.

Go through the following points to inspect the condensate drain:

If the condensate drain valve is connected to the compressor on the expansion system:

- 1. Remove the drain hose from the angled push-in connection (Figure 28 no. 1) so that it can be checked if the electric relief valve lets air through (Figure 28 no. 3), the exhaust frequency is 2 seconds open and 120 seconds closed. When the valve is closed, there must be no air leakage through the valve. If there are air leaks, the relief valve is dirty or defective.
- 2. Connect the red ball valve (Figure 28 no. 2).
- 3. Vent the dirt trap and electrical valve manually by controlling the electric relief valve. This can be done via the display of the nitrogen generator in the following way:

seconds. The electric valve now vents the dirt trap and the valve. 2x to return to the main screen.

- 4. Open the electric valve (Figure 28 no. 3) and clean the inside. Inspect the interior and replace if necessary. Then put the exhaust valve back together.
- 5. Open the dirt trap (Figure 28 no. 3) by unscrewing it at the bottom of the trap. Clean the gause of the dirt trap and remove any remaining dirt from the house of the dirt trap. Then mount the gauze and the cap back together.
- 6. Check the hose (Figure 28 no. 5) between the ball valve and the compressed air tank. Make sure it is in good condition. If not, the tubing must be replaced. Pay attention! The pressure vessel of the compressor must be emptied for this. This can be done by turning the valve carefully open if the dirt trap is open. For this, the compressor must be shut down. For this see: 'The compressor manual'.
- 7. Open the ball valve. Check if the relief valve is not leaking and mount the drain hose back on the push-in fitting (Figure 28 no.1).

PRESSCON

Figure 28. condensate drain on compressor connected to expansion system.

Watch out! For the preservation of the compressor is the combination of the ball valve, strainer, and electrical valve of high importance. It may be that one of these three components has not been mounted yet. In this case, these components should still be mounted

If the condensate drain on the compressor is connected to the compressor itself:

- 1. Compressor must be in operation.
- 2. A light will be on at the timer, press test (Figure 29 No. 1).
- 3. Check that the condensate drain is blowing off properly.

Figure 29. condensate drain on compressor connected to compressor

6 Safety valve

6.1 Every year or after 2000 operating hours

This part of the maintenance should only be performed by professionals:

- Checking safety valve

6.1.1 Checking safety valve

This manual only describes vacuum overpressure safety valves, used for vertical heat storage tanks. Safety valves on a horizontal heat storage tank must be replaced under the responsibility of the installer and may be revised in the workshop at PRESSCON.

The vacuum overpressure safety valve is almost always placed at the top of the heat storage tank. Because these tanks have a height of 10 meter or even more, working on a safety valve falls under working at heights. A safety harness or fall protection is therefore mandatory at all times!

Figure 30. Vacuum- pressure safety valve

- 1. Start with checking the pressure of the N2 blanket. This is shown on the display of the nitrogen generator.
- Then climb on the buffer tank and check if the safety valve blows off or not. On the nameplate of the safety valve, the working pressure and maximum pressure are indicated. Decide on the basis of this information if the safety valve should blow off or should be closed.

Example:				
Example: This safety valve has th	e pressure "25-20-2". That means:			
PRESSCON				
TYPE : PV 150				
PRESSURE: 25-20-2	mbar			
VACUUM : 4	mbar			
SERIAL NR : 619				
TEST DATE: 09-12				
The small valve opens	20 mbar (Working pressure)	(Figure 30 No. 1)		
The big valve opens at	25 mbar (Maximal pressure)	(Figure 30 No. 2)		
The vacuum valve opens at	-2 mbar (Vacuum)	(Figure 30 No. 3)		
If the pressure is below 20mbar, the safety valve must close				
If the pressure is above 20mbar, the small valve must vent				
If the pressure is above 25mbar, the big valve also needs to vent.				

- 3. Check if the valve plates of the safety valve do not jam. When the valve plates are lifted manually very short, the plate must close immediately and not get jammed. The safety valve and valve plates can be hot; therefore, you could use a tool to lift the valve plate.
- 4. Are the silicone rings of the valve plates OK? Disassemble the safety valve as in 6.2.1 Replacing valve plates and inspect if the silicone rings have no imperfections and if they still are flexible.

6.2 Every 2 years

This part of the maintenance should only be performed by professionals.

- Replacing valve plates

6.2.1 Replacing valve plates

The valve plates of a safety valve need to be replaced if:

- 1. One of the plates no longer seals properly. The plates are always replaced per set. This should be done in consultation with the owner.
- 2. If the Safety valve is part of the maintenance contract, the plates must be replaced every 2 years as a preventive measure.
- 3. Reduce lead or stainless steel.

Follow these steps to replace the valve plates:

- 1. Disassemble both covers (Figure 31 no. 1) of the safety valve by loosening the wing nuts on top
- Depressurize the buffer tank by tilting one of the overpressure plates (Figure 31 no. 2). Then the nitrogen can escape out of the buffer tank. Beware of the steam development that forms! The pressure of the N2 blanket becomes 0mbar now. This creates a 'minimum pressure' alarm.
- 3. Remove both valve plates (Figure 31 no. 2) when all the steam is vented.
- 4. Disassemble the cover plate which is mounted on the housing of the safety valve (Figure 31 no. 3). This can jam a little because of the old gasket. The cover plate needs to be loosened manually! Otherwise, there is a big change that the cover plate gets damaged and can't be used anymore.
- 5. Remove the old silicone gasket (Figure 31 no. 4) and renew the vacuum plate (Figure 31 no. 5)
- 6. Place a new silicone gasket (Figure 31 no. 4) on the housing of the safety valve and mount the cover plate back on (Figure 31 no. 3). Tighten the nuts evenly.
- 7. Place new overpressure plates (Figure 31 no. 2) and place the lead or stainless steel of the old pallets on the new pallets.
- 8. Mount the cover of the safety valve (Figure 31 no. 1) back on and secure it with the wing nuts.

Pay attention to steam development. Some safety guards have a cover of insulating material. Please note that the hot steam comes up more during venting.

Figure 31. Vacuum- pressure safety valve

7 Sensors

7.1 Every year of after every 2000 operating hours

This part of the maintenance should only be performed by professionals:

- Checking water level
- Checking pressure measurement.
- Checking sensor housing.

7.1.1 Checking pressure measurement

The pressure measurement is done by the sensor on top of the buffer tank. This sensor measures the pressure of the nitrogen blanket and displays the measurement on the display of nitrogen generator.

Checking if this works well can be done by venting the buffer tank, and check if the pressure of the nitrogen blanket drops to 0 mbar.

- 1. Follow the instructions of step 1 and 2 from chapter 6.2.1 Replacing valve plates to open the safety valve on the buffer tank. The pressure inside the tank will drop to 0 mbar.
- Check the values of the N2 blanket on the display. The main screen can always be called by pressing one, or multiple times, the Esc button on the display. The pressure of the nitrogen blanket must drop to 0 mbar on

multiple times, the button on the display. The pressure of the nitrogen blanket must drop to 0 mbar on the display. The display value may deviate maximal 5 mbar.

3. If the values deviate too much, the measurement is defect and need to be repaired

7.1.2 Checking water level

In order to check the water level, the water level in the buffer tank needs to be the same as the water level shown by the display. The difference between both may be 5 cm maximal. In order to measure the water level manually, the safety valve needs to be open. The pressure of the nitrogen blanket will drop to 0mbar, which causes a temporary alarm. Follow the instruction of step 1 and 2 from chapter 6.2.1 Replacing valve plates to open the safety valve.

Safety harness must be worn in this area

Measure the water level in the buffer tank by following these steps:

- 1. Measure the distance from the edge of the flange until the water. Use a tape-measure or a floating device to measure the distance (C).
- Measure the height between the edge of the flange and the edge of the roof (B). Keep in mind that there is 20 cm of isolation is placed over the edge of the room, that means that: The distance between the edge of the tank and the ground = height of the tank (A) + 0,20 m isolation.
 Calculate the water level the aid of the next formula. If necessary, use the fill in-exercise below:

Height of the tank(A) + 0,20 + Distance flange to roof edge (B) – Distance flange to water(C) = Water level.

If desired, fill in the following blank exercise. Based on this, the measured results can be found easily.

meter	+	0,20 meter	+	meter	_	meter	=	meter
Height of tank (A)		insulation		flange to roof (B)		Flange to water (C)		Water level

7.1.3 Checking sensor housing

The sensor housings on the heat storage tank should be visually inspected. The points to be met by the sensor housings are:

- 1. Is the sensor placed in a suitable sensor housing? A correct sensor housing consists of a base, insulation foam and a cover, just as shown as in Figure 33.
- 2. Is the sensor hosing cover (Figure 33 no. 1) correctly mounted? In the cap of the sensor housing are two little holes, these holes provide the drainage of moisture. The holes in the cap of sensor at the side of tank, need to be pointed downwards (Figure 34).
- 3. Remove the cover of the sensor housing. Check if the sensor housing is dry on the inside. There should be at most a few drops of moisture on the inside of the cap.
- 4. Is the sensor cable still good? Look at the colour and flexibility of the cable.
- 5. Slide the cover back onto the base of the sensor housing (Figure 33 no. 4) and make sure that the insulation foam won't block the condensation holes in the cap. Make these holes accessible if necessary and place new insolation foam in the cap if the foam is lost or damaged.

When a sensor housing does not meet the criteria, it must be repaired. Sensor housing repairs are not covered by the maintenance contract but will be seen as error/repair work. Contact PRESSCON if assistance or instructions are needed.

Figure 33. Sensor housing

Figure 34. Mounting of the sensors

8 Testing

8.1 Every year or after 2000 operating hours

This part of the maintenance must be carried out by authorized specialists.

- Starting nitrogen production;
- Checking production process and operation of the valves;
- Measuring flow and purity;
- Adjusting generator;
- Checking high pressure storage tank;
- Checking for leaks;
- Cleaning.

8.1.1 Starting nitrogen production

For performing maintenance, sometimes it is necessary that the generator is active. If the generator is active, it produces nitrogen. This is needed to, for example, measuring the output of the nitrogen generator, or to adjust them if necessary.

The points where applicable:

- Check production process and operation of the valves;
- Measuring flow and purity;
- Checking high pressure storage tank;
- Checking for leaks.

There are multiple ways to activate the nitrogen production, depending on the type of system or situation where the system is located, one of the follow ways can be chosen:

- Increasing nominal pressure (temporarily),
- Loose HP-vessel pipe

Always undo the adjustments made on the generator when the maintenance on the nitrogen generator is finished.

Increase nominal pressure:

The generator can be activated manually by temporarily increasing the value of the nominal pressure.

The value of the nominal pressure is de number of mBar that the generator wants to have in the buffer tank, and where the generator will work to if the pressure is too low.

By increasing the nominal value, the generator will try to increase the pressure of the nitrogen blanket to the new set nominal values. Nitrogen demand is then created. If there is a pressure vessel present, the tap to the storage vessel must first be closed.

Make sure that the nominal pressure is set more than 5 mBar higher than the pressure of the N2 blanket in the buffer tank. The pressure of the N2 blanket can be read on the display. Keep in mind that the generator has a delay of 1 minute before the production starts.

Example:						
Presscon	Vernit	3.6a				
N2 deken	1 7	mbar				
Waterniv.	970	c m				
(The main screen can be displayed by pressing the button several times.)						
Actual pressure N2 blanket = 17 m	nbar nominal pre	ssure = 15 mbar Sta	art differential = 5 mbar			
Nominal values to set from 15 mbar to 23 mbar or higher (17mbar + 5mbar = 22mbar)						

The generator only may be started manually for testing the generator. Always undo the adjustments when the test is completed.

Loosen HP-vessel pipe:

It is also possible to start the generator by disconnecting the pressure line between the nitrogen generator and the HP-vessel. But first, close the taps (Figure 35, Figure 36 no. 1) on the HP-vessel and the tap of the generator to the buffer tank. By doing this, the HP-vessel and buffer tank cannot run empty. Take off the compression fitting as shown in Figure 35, Figure 36 no. 2.

Starting the generator manually should only be done when testing the generator. Always undo the adjustments when the test is complete.

Figure 36. Loosen HP-vessel pipe, old type of system

8.1.2 Check production process and operation of the valves

In order to make sure that the generator can produce nitrogen, it is provided with several valves and pressure gauges. With these valves, the production of nitrogen is controlled and on the pressure gauges can be seen how this process is going and whether it is in order.

If the production process is going well, it can be concluded that the controlling and operation of the valve is in good condition. The most important thing is that the valves must have no pressure leakage.

The nitrogen production must be active to check the valves and the process. If this is not the case, it can be start manually. For this, follow the instruction from chapter 8.1.1 Starting nitrogen production.

Check the production process based on the following steps:

- 1. Check the pressure to the valve set (Figure 38 no. 5), this may not be lower than 5 bar. 6 till 8 bar is required for an optimal operation. When the pressure is lower than 5 bar, the pneumatic valves will not function probably.
- 2. The production process starts with building pressure in one of the two PSA's. Which of the two begins is not important. One of the pressure gauges will rise, by this you can see which of the two PSA's comes at pressure first (Figure 37 no. 1 and 2).
- 3. The pressure increases up to 6 bar, this pressure must be kept until the production time is elapsed, the production time is just over half a minute, during this time the other PSA needs to be depressurized.
- 4. If the production time has elapsed, the pressure will be levelled. The pressure in both PSA's will be levelled for 2 seconds, and now the pressure needs to be held.
- 5. The production switches. The PSA that came on pressure in step 1 is being vented, and pressure is built in the second PSA. The second PSA was depressurized during step 1.
- 6. When the production time has elapsed again, the pressure must be equalized again. Then again, a production switch takes place. This is the end of the cycle, and it now starts again from the beginning and begins again with step 1.

Pay attention to the next points when inspecting the production.

- 1. When the pressure is building up in the PSA, then only one PSA is pressurized at the same time. When both PSA's pressurize at the same time, something in the valves is defect.
- 2. If a PSA gets depressurized, it needs to be exactly 0 bar, and not, for example stick on 0,5 bar. When this happens, there is a clog in the blow-off circuit.
- 3. During the levelling process, the pressure in both cylinders must be precisely the same.
- 4. During production, the pressure in the cylinders must not increase too rapidly. The maximum pressure of 6 bar generally will be reached in the last 10 seconds of the production time.

Figure 37. Pressure gauges

Figure 38. Valves

8.1.3 Measuring flow and purity

The nitrogen production must be active to measure the flow and purity. If this is not the case, it can be started manually. For this, follow the instructions from chapter 8.1.1 Starting nitrogen production.

Of the nitrogen produced by the generator, it is important to know how pure the mixture is and its flow (L/min). Proceed as follows to measure the nitrogen:

New type of unit:

- 1. Shut off the buffer tank from the generator by closing the ball valve (Figure 39 No. 1) in the nitrogen line. If a high-pressure storage vessel is present, also close the ball valves on the HP vessel and the generator.
- 2. Depressurize and inactivate the generator according to the instructions in 4.2.1 Depressurize Generator.
- 3. Disassemble the blind plug on the side of the upper manifold (Figure 39 No. 2)
- 4. Now install the flow meter according to Figure 40 no. 3.
- 5. After the flowmeter, mount an oxygen meter (Figure 40 no. 4). Make sure that the air can escape freely so that a good flow measurement is maintained.
 - Depending on the type of oxygen meter, it should be calibrated first.
- 6. Run the system to produce nitrogen according to 8.1.1 Starting nitrogen production and measure the flow and purity.
- 7. Depressurize and inactivate the generator according to the instructions in 4.2.1 Depressurize Generator.
- 8. Disassemble the flow meter and oxygen meter and reassemble the blind plug.

Figure 39. Measuring flow and purity

Figure 40. Measuring flow and purity

Older type of unit:

- 1. Close the buffer tank from the generator by closing the ball valve (Figure 41 no. 1) in the nitrogen line. If there is a pressure vessel, also close the ball valve on the HP-vessel and the generator (Figure 42 no. 1).
- Remove the nitrogen tube (Figure 41 no. 2) before the ball valve so that the nitrogen cannot leak from the buffer tank. When a high-pressure vessel is present, de tube to the HP vessel (Figure 42 no. 2) needs to be disconnected instead of the nitrogen tube.
- 3. Mount a flow meter (Figure 41 no. 3) (Figure 42 no. 3)
- 4. After mounting the flow meter, mount an oxygen meter, make sure that the air can be blowed off so you will maintain a good flow measuring. (Figure 41 no. 4) (Figure 42 no. 4)
- 5. Let the system produce nitrogen according to 8.1.1 Starting nitrogen production and measure the flow and purity.
- 6. Depressurize and inactivate the generator according to the instructions in 4.2.1 Depressurize Generator.
- 7. Mount the nitrogen line back and open the ball valve again when the output is good.

The nitrogen is good when:

- The flow is high enough. (If necessary, use the rule of thumb: PSA format x 18 = needed flow L/min) (for example: PSA 2.0 x 18 = 36 L/min)
- 2. The percentage of nitrogen is higher than 97%.

The nitrogen percentage must be above 97% to approve the PSA. At a percentage below 97%, rust begins to form and thus the output is not good. An attempt can be made to recalibrate the generator to get the purity back above 97%. To do this, follow the instructions in chapter 8.1.2.

If this does not help, the PSA should be disapproved. If so, please contact Presscon.

8.1.4 Checking high pressure storage tank

The high-pressure storage tank must be pressurized. If this is not the case, the nitrogen production can be started manually to replenish the stock in the storage vessel. For this, follow the instructions from chapter 8.1.1 Starting nitrogen production.

The high-pressure storage vessel (Figure 43 no. 1) is used to create a nitrogen buffer that can be blown directly when needed. The vessel must meet the following criteria:

- 1. Is the vessel leak free? Check the vessel for leaks by spraying all joints and glue connections with soap water. The soap will start foaming if there is a leakage.
- 2. There should be no condense water in the vessel. Drain the condense water by opening the ball valve at the bottom. (Figure 43 no. 2) If wanted, connect a hose to the ball valve to drain the water.

Figure 43. Setup with high pressure storage vessel

If the pressure for the system is reduced to 6 Bar, the end pressure on the nitrogen storage tank may not be set higher than 5. Bar.

8.1.5 Checking for leaks

The nitrogen production needs to be active in order to check the generator for leaks. If this is not the case, the nitrogen production can be started manually. For this, follow the instructions from Chapter 8.1.1 Starting nitrogen production.

To let the PRESSCON nitrogen generator function optimally, there should be no pressure leaks. Do the following to check the generator for this.

- 1. Spray each coupling and hose connections with soapy water. Make sure that the electrical parts are not getting wet.
- 2. Check if the soapy water starts to foam. This indicates a leak of a connection.
- 3. Repair the leaking connection with the right material and seals.

8.1.6 Cleaning

Clean the generator and compressor so that the system is left presentable.

- 1. Use a compressed air spray to blow away loose dust.
- 2. Blow the radiator of the compressor and the air dryer clean.
- 3. Clean the whole system with water/soap.
- 4. If necessary for suborn dirt, use LOCTITE 7063 cleaner or LOCTITE 7840 cleaning. Watch out! LOCTITE 7063 and LOCTITE 7840 cleaner have an irritating trait and may be harmful.
- 5. Clean the floor around the unit, and sprinkle absorption sand / gravel on the spilled oil.

9 Final Check

In order to ensure that the system gets left behind working and correct, the next proceedings must be carried out:

- 1. Is all data correct?
- Check the alarm values in the display and on the sticker on the back of the display in the switch panel. These should match.
- Reset the alarms. Press the reset button on the display to reset the alarms. The light of the reset button needs to go out and the notification 'WARNING' or 'ALARM NOTIFICATION' need to disappear from the main screen. If it does not, examine where the alarm is coming from and correct this. PRESSCON is always available if assistance or instructions are needed.
- 3. Is everything clean? If necessary, clean the system additionally.
- 4. Are all valves in the correct position like they were before the maintenance?
- 5. Fill out the maintenance log for the compressor. This can often be found on the compressor itself.
- 6. Place service stickers on the control panel and fill these in. Also note name or initials. Place an additional sticker on the filters or compressor if necessary if it will enhance service friendliness.

10 Alarms and error processing

10.1 Faults and alarms

The Touchscreen software, PRESS display and PRESS control can generate error and alarm messages when something is wrong with the system. The difference between an error and an alarm is the severity of the problem. An error message is considered less serious than an alarm message. An alarm message is mainly about critical problems in the expansion system. For example, a sensor failure or if the water level has exceeded the maximum or minimum height. An error message is mainly about less critical errors in the system, or a premature warning of an alarm.

If an error message or an alarm message appears, PRESS-control always activates its collective alarm relay. This relay is potential-free. The collect alarm relay is used to send a warning signal to any kind of device that alerts the user. For example, the collect alarm signal can be sent to a computer or SCADA system to indicate that the expansion system has a problem. The collect alarm relay responds to all faults and alarms.

When an alarm message appears, PRESS control will also activate the boiler alarm relay. This relay is potential free. The boiler alarm relay can be used to connect blocking signals to devices that must stop in case of a critical problem in the expansion system. For example, if the water level in the heat storage tank is higher than the "reduce water level" and "water level maximum" settings, the water presses against the roof of the tank and thus should not expand further. With the boiler alarm relay a signal can then be sent to the boiler to stop the heating of the water. This prevents further expansion.

The errors and alarms can also be considered as two alarm levels. The following illustration clarifies this.

Alarm level: 1, A fault has occurred. The collect alarm activates and the display shows "WARNING".

Alarm level: 2, An alarm has occurred. The boiler alarm activates and the display shows "Alarm!".

Figure 44. Alarm levels

The description of the alarm levels as shown above is based on the operation of the PRESS-display. The Touchscreen handles the alarms in the same way as the PRESS-display but shows it to the user in a different way. Should an error or alarm message occur, the component to which the message refers will turn red. By pressing the red component, the Touchscreen displays the error and alarm information with an error code.

10.2 Faults and alarm messages

The following tables show the most important error and alarm messages that may appear on the Touchscreen and PRESS-display. A description is given for each message. The table also indicates for each message whether it is an error and/or an alarm.

10.2.1 Fault and alarm messages for the PressControl (JGA2027) (Premium (plus) and Premium plus DUO)

Error	Display	Fault	Description	Action
1	EEPROM R/W	Warning	EEPROM fault	Contact the supplier
2	EEPROM protect	Warning		
3	First time booted	Warning	Print was started up for the first	
			time. Shouldn't happen in practice	
4	Config base	warning	Control value of configuration not	
5	Config settings	Warning	Settings regarding the	
	5 5	5	configuration are not correct	
6	Config checksum	Warning	Control value on content of	
7	Transmission path error input 1	Warning	Error detected at input Measured	Check input
8	Transmission path error input 2	Warning	voltage is not correct	
9	Transmission path error input 3	Warning	-	
10	Transmission path error input 4	Warning	-	
10	Transmission path error input 5	Warning	-	
12	Transmission path error input 6	Warning	-	
12	Transmission path error input 7	Warning	-	
14	Transmission path error input 8	Warning	-	
14	Transmit path error output 1	Alarm	Error detected at output, Measured	Chock output
15	Transmit path error output 1	Alarm	current is not correct.	
10	Transmit path error output 2	Alarm	-	
17	Transmit path error output 3	Alarm	-	
10	Transmit path error output 4	Alarm	-	
19	Transmit path error output 5	Alarm	-	
20	Transmit path error output 6	Alarm	-	
21		Alarm	-	
22	Transmit path error output 8	Alarm	-	
23	Transmit path error output 9	Alarm	-	
24	Transmit path error output 10	Alarm	-	
25	I ransmit path error output 11	Alarm		
26	I ransmit path error output 12	Alarm		
27	Sensor 1	Alarm	Error detected at analogue input.	Check analogue input
28	Sensor 2	Alarm	- Must be greater than 3 mA and	
29	Sensor 3	Alarm	less than 21 mA	
30	Sensor 4	Alarm	_	
31	Sensor 5	Alarm	_	
32	Sensor 6	Alarm		
33	Sensor 7	Alarm		
34	Sensor 8	Alarm		
35	Sensor 9	Alarm	Error detected at digital sensor	Check connection to
36	Sensor 10	Alarm	4	นเนเลเ จะแจบเ
37	Sensor 11	Alarm	_	
38	Sensor 12	Alarm	_	
39	Sensor 13	Alarm		

Error	Display	Fault	Description	Action
40	Sensor 14	Alarm		
41	Sensor 15	Alarm		
42	Sensor 16	Alarm		
43	System pressure sensor	Alarm	Sensor for system pressure	Check sensor for
_			regulation is incorrect	connection
44	System pressure minimum	Alarm	System pressure is too low for too	Check pressure and
45			long	nitrogen supply
45	System pressure maximum	Alarm	System pressure is too high for too	Check pressure and
46	System pressure N2 not present	Warning	No nitrogen present within the set	Check nitrogen supply
-0		Wanning	time	and production
47	System pressure N2 in timeout	Warning	Blowing in of nitrogen has taken	Check nitrogen supply
	-		too taken too long	and for leaks
48	System pressure N2 out of timeout	Warning	Blowing off nitrogen has taken too	Check nitrogen
10	Water level sensor	Alarm	Sensor for water level control is	discharge Check water level
43		Alalin	incorrect	sensor(s)
50	Increase water level	Warning	The water level is too low, the	Check water supply.
		Ũ	water should be refilled	Add water in tank
51	Lower water level	Warning	The water level is too high, the	Check water discharge.
			water must be drained	Drain water from tank.
52	Water level minimum	Alarm	The water level is too low for too	Check water level
53	Water level maximum	Alarm	The water level is too high for too	Check water level
			long	
54	Water level in time-out	Warning	Adding water took too long	Check water level.
				Check water supply.
55	Water Level out of Timeout	Warning	Discharging water has taken too	Check water level.
			long	water
56	Heat content sensor	Alarm	Sensor for heat content is not	Check sensor or
			correct	connection
57	Heat content warning	Warning	The difference between desired	Check water level and
58	Heat content alarm	Alarm	heat content and water level is too	heat content
50	Buffer pressure sensor A	Alarm	large.	Check sensor or
55		Alalin	incorrect	connection
60	Buffer pressure minimum	Alarm	Buffer pressure has been too low	Check buffer pressure
			for too long	
61	Buffer pressure maximum	Alarm	Buffer pressure is too high for too	Check buffer pressure
62	Lovel adjustment internal	Alorm	long Error in water lovel of this tank	Chack water level
02		Alarm	Error in water level of cutomol tank	Check water level
63	Level adjustment external	Alarm	Error in water level of external tank	external Check
				connection to external
				tank.
64	Boiler protection active	Warning	The boiler protection is activated	Check reason for
				protection
65	Boller protection deactivated	vvarning	off	
66	N2 client server connection	Warning	The connection with the N2 server	Check connection
			has been lost	
67	Compressor fault	Alarm	Compressor fault input activated	Check fault input(s)
68	Compressor inactive	Alarm	Compressor on signal not seen	Check compressor.
			within the set time	Check compressor on
69	Compressor time-out	Warning	Compressor has been running for	Signal Check reason for
03		warning	too long in a row	compressor to be
				activated for a long time

Error	Display	Fault	Description	Action
70	Compressor service warning	Warning	Compressor running time is longer	Perform service
71	Compressor service alarm	Alarm	than the set value.	
72	PSA service warning	Warning	PSA running hours is longer than	Perform service
73	PSA Service Alarm	Alarm	the set value	
74	PSA I/O	Alarm	PSA inputs/outputs have an error	Check PSA inputs and outputs
75	PSA Settings	PSA Settings Alarm PSA settings are not correct		Check PSA settings
76	PSA trip Meter	Warning	PSA has run longer (in 1 day) than the set than the set maximum	Check reason PSA has run for too long has
77	Oxygen sensor	Alarm	Oxygen sensor is incorrect	Check sensor. Check connection to sensor
78	Oxygen minimum	Alarm	Measured oxygen level is too low for too long	Check oxygen value
79	Oxygen maximum	Alarm	Measured oxygen level is too high for too long	
80	Sensor purity	Alarm	Sensor for purity measurement is incorrect	Check sensor. Check connection to sensor
81	Purity minimum	Alarm	Measured purity is too low for too long	Check purity. Check PSA
82	Purity maximum	Alarm	Measured purity is too high too	
83	ELC sensor A TX	Alarm	Sensor for tank X of the ELC is not correct	Check sensor. Check connection to sensor
84	ELC sensor A TY	Alarm	Sensor for tank Y of the ELC is not correct	
85	SLC sensor A TX	Alarm	Sensor for tank X of the ELC is not correct	
86	SLC sensor A TY	Alarm	Sensor for tank Y of the ELC is not correct	
87	License about to expire	Warning	License almost expired	Check status of license
88	License expired	Alarm	Licence has expired, function no longer available	and contact supplier
89	Alarms suppressed	Notification	Alarms are being suppressed	
90	Compressed air too low time-out	Warning	Compressed air demand is too long	
91	N2 pressure sensor	Warning	N2 pressure sensor fault	Check the set sensor
92	N2 pressure sensor settings	Warning	The start pressure is set higher or equal to the stop pressure	Set the settings correctly
100	CAN TX	Warning	Transmission via CAN bus does not work (properly)	Check CAN bus
101	CAN TX fifo	Warning	Too many messages to send via CAN-bus	
102	CAN RX fifo	Warning	Too many messages via CAN bus received	
103	CAN duplicate device number	Warning	Double unit number detected on CAN bus	Check CAN bus for loops. Check that no devices with the same number are present on the CAN bus.
104	IP-conflict	Warning	Device with same IP address detected on network	Check units for IP address
105	Ethernet TX fifo	Warning	Too many messages for Ethernet	Contact the supplier
106	address	Warning	No MAC address found in print	
107	NTP connection	Warning	Could not receive time via network	Check that print has access to the time server.
108	ТСР ТХ	Warning	Too many messages via TCP to send	Contact the supplier

Error	Display	Fault	Description	Action
109	TCP RX	Warning	Too many messages received via TCP	
110	Buffer pressure sensor B	Warning	Sensor B for buffer pressure is incorrect	Check sensor or connection
111	Buffer pressure measurement	Warning	Sensor B measures a higher value than Sensor A	Check sensors
112	ELC sensor B Tank X	Alarm	Error in Sensor B	Check sensor or connection
113	ELC sensor B Tank Y	Alarm	Error in Sensor B	Check sensor or connection
114	ELC sensor measurement Tank X	Alarm	Sensor B measures a higher value than Sensor A	Check sensors
115	ELC sensor measurement Tank Y	Alarm	Sensor B measures a higher value than Sensor A	Check sensors
116	SLC sensor B Tank X	Alarm	Error in Sensor B	Check sensor or connection
117	SLC sensor B Tank Y	Alarm	Error in Sensor B	Check sensor or connection
118	SLC sensor measurement Tank X	Alarm	Sensor B measures a higher value than Sensor A	Check sensors
119	SLC sensor measurement Tank Y	Alarm	Sensor B measures a higher value than Sensor A	Check sensors
140	Started up	Notification	Device has been restarted	
142	Internal fault	Warning	Internal fault	Contact the supplier
143	Test fault	Alarm	Test error for testing purposes, may not occur in practice	

10.2.2 Fault and alarm messages for the Touchscreen (JGA1085)

The error messages below apply to the display if it is installed in conjunction with a PressControl type JGA2027.

Error	Display	Fault	Description	Action
1	EEPROM R/W	Warning	EEPROM error	Contact the supplier
2	EEPROM protect	Warning		
3	EEPROM base	Warning	Program error	
4	Config checksum	Warning	Check value on content of configuration is not correct.	
5	CAN-bus TxBuffer	Warning	Display sends too many messages	Check CAN bus
6	CAN-bus RxBuffer	Warning	Display receives too many messages	Check CAN bus
7	Config base	Warning	Monitoring value of configuration not correct	Contact the supplier
8	Config settings	Warning	Settings for the configuration do not are not correct	
9	First time booted	Warning	Print has been started for the first time. Should not happen in practice	
11	CAN-bus halt	Warning	Error detected on CAN bus	Check CAN bus
20	RTC comm.	Warning	Internal clock fault	Offer PCB for repair
22	Main voltage	Notification	Display has been rebooted	
23	Software version	Warning	Software version not compatible with baseboard	Check that the correct software has been used between display and ground board
24	PressControl N/A	Warning	Cannot connect to ground print	Check settings and connections
28	Uart rxFifo	Warning	Excessive communication via service dongle	Check communication via service dongle
29	Uart txFifo	Warning		
43	Uart rxData	Warning	Communication error via service dongle	
44	Uart rxFifo	Warning		
45	Uart frame length	Warning		
46	Uart frame bcc	Warning		
50	IP-conflict	Warning	There is a device with the same IP address on the network	Check network settings. Contact the network administrator
51	MAC-address	Warning	MAC address not set. Should not occur in practice	Contact the supplier
52	W5500 cmd	Warning	Internal error. Should not occur in practice	
53	NTP connection	Warning	Cannot retrieve the time from the NTP server	Check whether NTP server can be reached via network. Contact the network administrator
55	Timer handler	Warning	Internal error. Should not occur in practice	Contact the supplier
60	TCP Tx buffer	Warning	Too much communication via TCP	
64	TCP Rx buffer	Warning		
67	CAN double	Warning	Duplicate device number detected	Check device numbers
74	4D Display	Warning	Cannot connect to display	Send printout for repair
75	Test error	Warning	Test error, for testing purposes. May not occur in practice	Contact the supplier

10.2.3 Fault and alarm messages for the PressControl (JGA0953) (Premium (plus) and Premium plus DUO)

Frror	Display	Fault	Description	Action
Entor F01	Eeprom address	1	Read/write error in the permanent	Something went wrong while reading
F02	Feprom R/W	1	setting memory	or writing a setting: check settings
F03	Feprom 0x0000	1	(EEPROM)	
F04	Configuration	1	Checksum error	
F05	CAN TxBuffer	1	CAN bus transmit buffer full	Check CAN bus. Adjust macro
F06	CAN RxBuffer	1	CAN bus receive buffer full	interval if necessary.
F07	Config base	1	Base values do not match.	The software is new, first time
F08	x	1	х	started. Otherwise, the Eeprom
F09	First boot	1	First boot up, new cfg.	memory is not properly written.
F10	x	1	x	
F11	CAN-bus halt	1	CAN bus halt detected	One of the devices on the bus had a fatal CAN error or rebooted.
F12	Water in timeout	2	Feed pump sent too long	Problem with the automatic fill/flush
F13	Water out timeout	2	Water outlet sent too long	system.
F14	Water level min	3	Water below minimum level	Add water
F15	Water level max	3	Water above maximum level	Drain water
F16	Lower water	2	Water above, lower level	Drain water
F17	Increase water	2	Water below, lower level	Add water
F18	System pressure min	3	System pressure below minimum	System pressure not good; call
F19	System pressure max	3	System pressure above maximum level	service technician
F20	N2 in timeout	2	Intake valve controlled too long	
F21	N2 out timeout	2	Exhaust valve operated too long	
F22	Main power	0	System restarted	x
F23	Comp thermal	2	Compressor thermal fault	Compressor fault: Check compressor.
F24	Comp temperature	1	Compressor temperature fault	Call service technician
F25	Comp compressed air	2	Compressor compressed air low	
F26	Comp control time	2	Compressor controlled too long	
F27	N2srv connection	2	N2 server connection fault	Check CAN bus ext. app.
F28	Uart rxFifo	1	UART receive buffer full	Too much debug information sent, or noise on line.
F29	Uart txFifo	1	UART send buffer full	
F30	RTC comm.	1	Internal clock is faulty	Send board for repair
F31	Clock new	2	Internal clock not set	Set the clock via service menu
F32	PressControl N/A	2	PressController not available	Check SW version and CAN bus
F33	Software ver.	2	Software version difference between the PressDisplay and PressControll	Check SW version and CAN bus Perform software update.
F34	Boiler protection off	2	Boiler protection is switched off	Press button B if you want to turn it on again.
F35	Span setting	2	Span high is lower than Span low	Check settings.
F36	External ADC	3	A/D converter defective	Send print for repair
F37	ELC Sensor TankX	3	ELC sensor Tank X faulty	Check (ext) pressure sensor (wiring,
F38	ELC Sensor TankY	3	ELC sensor Tank Y faulty	sensor, connection)
F39	Lcd button	2	Button pressed at start-up	Release button and restart
F40	x	0	x	
F41	Sensor 1	3	Pressure sensor 1 defective	Check pressure sensor (wiring,
F42	Sensor 2	3	Pressure sensor 2 defective	sensor, connection)
F43	Sensor 3	3	Pressure sensor 3 defective	
F44	Sensor 4	3	Pressure sensor 4 defective	
F45	Sensor 5	3	Pressure sensor 5 defective	4
F46	Sensor 6	3	Pressure sensor 6 defective	4
F47	Sensor 7	3	Pressure sensor 7 defective	4
F48	Sensor 8	3	Pressure sensor 8 defective	
F49	ElcTX connection	3	ELC tank X connection error	PressController cannot find external
F50	ElcTY connection	3	ELC tank Y connection failure	device; check CAN-bus and external
F51	SICTX connection	3	SLC tank X connection fault	PressController
F52	SICTY connection	3	SLC tank Y connection faulty	

Error	Display	Fault	Description	Action
F53	SLC Sensor TankX	3	SLC sensor Tank X defect	Check (ext) pressure sensor (cabling,
F54	SLC Sensor TankY	3	SLC sensor Tank Y defect	sensor, connection)
F55	Taskfifo	1	Internal fault	
F56	ElcTX fatalError	1	External tank1 has fatal alarm	The (external) PresControl has a fatal
F57	ElcTY fatalError	1	External tank2 has fatal alarm	Tank1/Tank2 error. Clear the alarm at
F58	SIcTX fatalError	1	External tank1 has fatal alarm	the other Controller and press reset
F59	SIcTY fatalError	1	External tank2 has fatal alarm	key.
F60	Tank 1 level	3	External level control connection of	PressController cannot find external
	consumption		tank 1 could not retrieve value for	device; check CAN bus, and external
		-	more than 15 seconds	PressControl.
F61	Tank 2 level	3	External level control connection of	
	consumption		tank 2 could not retrieve value for	
500	Tank 4 laval sonson	2	more than 15 seconds	
F62	Tank 1 level sensor	3	Sensor Lank 1 control defective	Check (ext) pressure sensor (wiring,
F63	Tank 2 level sensor	3	Sensor Tank 2 control defective	Sensor, connection)
F04	Oxygen min i	1	Dxygen level PSA generator below	Check PSA generator
EGE		1		-
F05	Oxygen max i	1		
E66	Dual appNo.(d)	1	There are two devices in the network	Change device numbers so that each
1.00		•	with the same number	device is unique
			This system will work for another 14	Call Service Engineer
			davs. Make sure that within two	
F67	Service < 14 days		weeks service maintenance is	
			performed within two weeks.	
F68	Service expired		No service done; system is switched	Call Service Engineer
	-		off	_
F69	Dual appNo (c)	1	There are two devices in the network	Change device numbers, so that
			with the same number.	each device is unique
F70	Tank 1 pressure related.	1	The pressure measurement	PressController cannot find external
			connection of tank 1 could not	device; check CAN bus, and external
			retrieve a value for more than 15	PressControl.
F 74	Tank 2 processing related	4	Seconds	
F/1	Tank 2 pressure related.	1	of tapk 2 could not got a value for	
			more than 15 seconds	
F72	Tank 1 pressure sensor	1	An (ext) pressure sensor of tank 1.1	
112		•	control gives an error message	
F73	Tank 2 pressure sensor	1	An (ext) pressure sensor of tank 2	
		•	control gives an error message	
F74	Buffer pressure verb.	1	The connection of the buffer pressure	
			measurement has a timeout error.	
F75	Buffer pressure min	1	Buffer pressure below minimum niv.	Call Service Engineer
F76	Buffer pressure max	1	Buffer pressure above maximum niv.	Ĩ
F77	Buffer pressure sensor	1	An (ext) pressure sensor of the buffer	
			pressure measurement gives an error	
			Oxygen sensor error	Check that set sensor is an oxygen
F78	Oxygen sensor1	1		sensor. Check oxygen sensor is not
				giving false readings.
F79	PSA day counter	1	The PSA has been active longer than	Check system for leaks
			the set time in 24 hours. set time in	
			24 hours.	

10.2.4 Fault and alarm messages for the Touchscreen (JGA1085)

The error messages below apply to the display if it is installed in conjunction with a PressControl type JGA0953.

Error	Display	Fault	Description	Problem
F01	Eeprom address	1	Read/write error in permanent setup	Something went wrong while reading
F02	Eeprom R/W	1	memory (EEPROM)	or writing a setting; check settings
F03	Eeprom 0x0000	1		
F04	Configuration	1	Checksum error	
F05	CAN TxBuffer	1	CAN bus transmit buffer full	Check CAN bus. Adjust if necessary.
F06	CAN RxBuffer	1	CAN bus receive buffer full	macro interval.
F07	Config base	1	Base values do not match	The software is new, first time started.
F08	Configuration	1	Controller value configuration not correct	Otherwise, the Eeprom memory is not properly written.
F09	First boot	1	First boot up, new cfg.	
F10	x	1	x	
F11	CAN-bus halt	1	CAN bus halt detected	One of the devices on the bus had a fatal CAN error or rebooted.
F20	RTC comm.	1	Communication with RTC not correct	Contact service technician
F22	Main voltage	1	Display has been rebooted	Check power supply
F23	Software vers.	1	Software version does not match	Check software versions of PressControl [JGA953] and ColorPressDisplay [JGA1085].
F24	PressControl N/A	1	No connection to PressControl	Check CAN bus connection to PressControl [JGA953].
F28	Uart rxFifo	1	UART receive buffer full	Too much debug information sent, or
F29	Uart txFifo	1	UART send buffer full	noise on the line.
F42				
F43	Uart rx data	1	Communication error	Contact service technician
F44	Uart rxFifo	1		
F45	Uart frame length	1		
F46	Uart frame BCC	1		
F50	IP-conflict	1	There is a device on the computer network with the same IP address	Check network settings
F51	MAC-address	1	MAC address error	Contact the service technician
F52	W5500 cmd	1	Factory error	
F53	NTP connection	1	Connection to the time server could not be made	Check access to Internet / time server.
F55	Timer handler	1	Factory error message	Contact the service technician
F57	MAC-address	1	MAC address error	Contact the service technician
F60	TCP Tx buffer	1		
F63	TCP Rx buffer	1		
F67	Dual appNr(d)	1	Dual device number detected	Check device numbers on CAN bus
F74	Display error	1	Display has error	Contact service technician
F75	Test fault	1	Test error message	

10.2.5 Fault and alarm messages for the PRESS-Basic control (Basic)

Alarm no.	Display message	Fault	Alarm	Description	Cause of problem
F01	Eeprom address	Х		Read write error in the permanent	An error has occurred during
F02	Eeprom R/W	Х		eeprom settings memory	reading or writing of a setting;
F03	Eeprom address0	Х			check configuration
F04	Configuration	Х		Checksum error.	
F05	CAN TxBuffer	Х		CAN-bus send buffer is full	Check CAN-bus. Adjust macro
F06	CAN RxBuffer	Х		CAN-bus receive buffer is full	interval when necessary
F07	Config base	Х		Base values do not match	New software or first boot. Else
F09	First boot	х		First boot, new cfg.	Eeprom memory program could be faulty
F11	CAN-bus halt			CAN-bus halt detected	One of the devices on the bus had a fatal CAN error, or has been restarted
F14	Water level min	х	х	Water below minimum level	Insufficient water in the heat storage tank
F15	Water level max	Х	Х	Water above maximum level	Drain off water
F16	Water lower	Х		Water above reduce level	Drain off water
F17	Water raise	Х		Water below reduce level	Add water
F18	System press min	Х	Х	System pressure below minimum level	System pressure not correct,
F19	System press max	х	х	System pressure above maximum level	there is a leakage on the system or heat storage tank; call service technician
F22	Main power			The system has restarted	
F23	Comp thermic	Х	Х	Compressor thermal error	Compressor error: Check
F25	Comp air low	х	х	Compressor pressure too low	compressor; Call service mechanic
F28	Uart1 rxFifo	Х		UART1 receive buffer is full	Debug information overflow. Or
F29	Uart1 txFifo	Х		UART1 send buffer is full	distortion on info bus
F32	BasicPControl N/A	х		BasicPController not available	Check software version and CAN-bus connection
F33	Software ver.	x		Software version between PressDisplay and BasicPControll is different	Update the software of the display and controller
F34	Boiler prot off	х		Boiler alarm is switched off	Press button 'B' to switch on the boiler alarm again
F35	Span config	Х	Х	Span high is lower than Span low	Check configuration
F36	External ADC	х	х	A/D converter defect	Send the controller to the dealer for repair
F39	Lcd button	х		Button was pressed during start-up	Release the button and restart the system
F41	Sensor 1	Х	Х	pressure sensor 1 defect	Check pressure sensor (cable,
F42	Sensor 2	Х	Х	pressure sensor 2 defect	sensor, connection)
F55	Taskfifo	Х		Internal error	
F62	Regel niv sensor	х	х	level sensor error	Check (ext) pressure sensor (cable, sensor, connection)
F67	Double dev Nr(d)	х	х	Two devices have the same network number	Change device number to a unique number.
F68	Service <14 days			Make sure that a maintenance service has been carried out within two weeks	Call service technician
F69	Service expir.			No maintenance service carried out; system will shut down	Call service technician
F70	Double dev Nr(c)	х	х	Two devices have the same network number	Change the device number to a unique number
F73	Press contr sens	Х	Х	Pressure sensor error	
F75	Reserved	Х	1	Reserved error message	
F76	Reserved	Х	İ	Reserved error message	
F77	Reserved	Х		Reserved error message	
F78	Reserved	Х		Reserved error message	

10.3 Overriding the boiler alarm relay

If the boiler alarm relay is active and blocks one or more devices, such as the boiler, there are scenarios in which this is not desirable. For example: if the boiler still must heat the central heating system of the greenhouse while the water level sensor on the buffer tank causes an alarm message. In such scenarios it is possible to bypass the boiler alarm relay. While bypassing the boiler alarm, the alarm messages on the Touchscreen and the PRESS-display remain unchanged, but the boiler alarm relay on the PCB will be switched off. So, the blocking signal to another device will also be disabled.

ATTENTION! Overriding the boiler alarm is not without any risks. It is strongly recommended to consult the technical support of PRESSCON on forehand. If used in an inappropriate situation, damage to the buffer tank and central heating systems cannot be prevented.

The PRESS-control of the type of PRESS-control minimal and PRESS-control maximal have two buttons on the PCB. The button with the designation "SWITCH B" is programmed to override the boiler alarm relay. The button should be pressed and held for 3 seconds to activate the override. The PRESS-display will then give 2 bleeps and the message 'BOILER PROTECTION OFF" will be shown on the main screen. To deactivate the override, the 'SWITCH B' button should be pressed and held again for 3 seconds.

For switch panels with a Touchscreen the activation and deactivation of the boiler alarm bypass works the same as for panels with a PRESS-display. However, the Touchscreen does not show the message "BOILER SAFETY OFF" on the screen but instead the icon of the nitrogen generator will turn red. Selecting the nitrogen generator on the Touchscreen will display the alarm menu showing the alarm "F34 Boiler Safety off".

The button is located at the centre of the PCB. The following image shows what the switch looks like.

Figure 45. Switch A and B on the PCB of the PRESS-control

The "SWITCH B" button is not available on the PRESS-Basic control PCB used in the VERNIT 2.0 - 30.0 N2(i) Basic systems. These systems do not have the possibility to bypass the boiler alarm relay. The override of the boiler alarm relay is automatically deactivated after 48 hours.

11 Warranty

PRESSCON provides a warranty of 1 year on the components of the expansion system, assuming that the following conditions are met:

- The equipment has been installed by PRESSCON or under direct or indirect supervision of PRESSCON.
- The equipment is undamaged and unprocessed and not defective due to improper use.
- The equipment is not defective by inadequate maintenance or other proceedings.
- The equipment is not defective or non-speech hit by negligence, accident or whatsoever.

The warranty includes checking, repair or replacement if defective from proven equipment. Faulty equipment, which has been replaced shall become property of PRESSCON.

Regarding the products supplied by PRESSCON in the Netherlands, PRESSCON refers to the general terms of conditions. All offers and agreements relating to goods to be delivered and / or services within the Netherlands are applicable the general terms and conditions for the technology industry, as last filed by the FME-CWM with the court in The Hague. A Dutch copy of these terms is included with all Dutch offers and agreements. Other terms and conditions are expressly rejected.

12 Appendix In addition to this document, the description of the content extends to the following appendixes:

Appendix ID	Description	Version
-	-	-

Page 54 of 72 PRESSCON FX PREVENT

13 Document history

Version 1.0 to 2.0 indicates	Modification, in lay-out, structure or other major modifications.
Version 1.0 to 1.1 indicates	Supplement, a chapter of paragraph has been added to the document.
Revision _R01 to _R02 indicates	Correction, an image, language error or text error has been corrected.

Version	Date	Modification
1.6_R02	06-02-2017	Chapter 4.2.3. Tightening spindles, adjusted torque value from 95 N/m to 80 N/m.
2.0_R00	04-08-2022	Names of systems (Economy A, B and Duo changed to Basic, Premium and Premium plus. Drawings and text completely renewed.

14 To conclude

This manual has been written in order to support the mechanic, installer or customer in adjusting, modifying or working with a product of PRESSCON. Its aim is to maintain and possibly improve the quality of its products. If additional information or support is requested, then PRESSCON can be consulted through the following information.

PRESSCO		+31 (0) 174 648 300
Veilingweg 27 A	Web:	www.presscon.nl
2675 BR Honselersdijk	E-mail:	info@presscon.nl

Appendix A: Touchscreen

The touchscreen is the most important control device for reading the statuses and values of the system. The touchscreen has no physical buttons, but only digital buttons on the screen. Touching the buttons and the images on the screen can be used to navigate and adjust the settings. The table below shows the buttons of the touchscreen.

1. Main screen of the Touchscreen

Every button has a different function, some of them have several functions. The following table describes which function each button has.

Button	Description		
	This button is only displayed in the main menu and guides you to the following functions:		
Menu	 User : User menu Service : Service menu Factory : Factory menu 		
	 Press the button to view the current fault and alarm messages. 		
Alarm	 Press the button for more than 3 seconds to view the alarm log. 		
Info	 Pressing this button calls up the information screen. Specific information is displayed in here for each component as well as the current status. The same menu for a specific component can also be accessed by pressing the relevant icon in the menu screen. 		
Esc	 This button is in every menu and returns you to the previous menu. 		

When the "menu" option is pressed, the following menus can be selected.

Button	Description
User	The user menu is accessible to everyone.This contains setting which the user can change.
Service	 The service menu is only accessible via a code. Service information can be requested via this menu.
Factory	 The service menu is only accessible via a code. Factory settings can be entered from this menu.

1.1 Main screen lay-out VERNIT

The structure of the menu is based on the type of system the user has. Press the icons to find out the status of this system.

Figure 46. VERNIT 2.0 – 30.0 N2(i) DUO system overview (Only when the VERNIT is installed)

1.2 Main screen lay-out HORNIT

Figure 47. HORNIT 2.0 – 30.0 N2(i) DUO system overview (Only when the HORNIT is installed)

2. Icons on the main screen

2.1 Compressor

The compressor supplies compressed air to the system. The status of the compressor is forwarded to the PressControl.

2.2 PSA generator

The PSA generator produces nitrogen for the system. The status of the PSA generator is forwarded to the PressControl.

PSA generator	Description/status	PSA generator	Description/status
	 The circle with the cross, will start running when the PSA generator is activated. When it is coloured white, de compressor is working properly. 		 If the system turns red, there is a malfunction. Press the system to go to the fault menu.

2.3Oxygen sensor

The oxygen sensor measures the value of the oxygen which remains after generation the nitrogen from the PSA generator. The status of the oxygen sensor is forwarded to the PressControl.

Oxygen sensor	Description/status
	 The current value of the oxygen is displayed above the sensor. When it is coloured white, the oxygen sensor is functioning properly.
	 When the oxygen sensor is coloured red, there is a malfunction. Press the oxygen sensor to go to the fault menu.

2.4 Valves

The vertical valves above the PSA generator represent the nitrogen blow-in valves for both tanks.

Vertical valves	Description/status	
	 When the valve turns white, it means the status of the valve is yet unknown. 	
	• When the valve turns red, it means the valve is closed.	
	• When the valve turns green, it means the valve is open.	

The horizontal valves next to the tank, regulate the water discharge and supply. The top valve shows the water supply. The lower valve shows the water return. The status of the valves is forwarded to the PressControl.

Horizontal kleppen	Description/status		
	 When the valve turns white, it means the status of the valve is yet unknown. 		
	• When the valve turns red, it means the valve is closed.		
	• When the valve turns green, it means the valve is open.		

2.5 Overpressure safety relief

The overpressure safety reliefs are on top of the tank. (These protection devices are only visible with VERNIT systems with a vertical tank. The status of the overpressure safety relief is forwarded to the PressControl.

Overpressure safety relief	Description/status
	 When the tank is blowing off nitrogen, this is indicated by clouds above the tank's overpressure relief. Alternately, 4 different symbols can be displayed as shown in the left figure. The number of depicted clouds, represents the amount of nitrogen.

2.6 VERNIT tank malfunction status

The status of the tank is represented by the colour of the tank.

Tank	Description/status	Tank	Description/Status
	When the tank is represented like this, the tank is functioning properly.		• When the tank is represented like this, the tank has a water level failure.
	 When the tank is represented like this, the tank has a system pressure failure. Press the tank to go to the fault menu. 		 When the tank is represented like this, the tank has system pressure failure and water level failure. Press the tank to go to the fault menu.

2.7 VERNIT tank water level status

2.8HORNIT tank malfunction status

The status of the tank is represented by the colour of the tank.

Tank	Description/status	Tank	Description/Status
	 The water level is represented by the blue part in the tank. The water level is also displayed next to the tank. When the tank is represented like this, the tank is functioning properly. 		 When the tank is represented like this, the tank has a water level failure. Press the tank to go to the fault menu.
	 When the tank is represented like this, the tank has a system pressure failure. Press the tank to go to the fault menu. 		 When the tank is represented like this, the tank has system pressure failure and water level failure. Press the tank to go to the fault menu.

2.9HORNIT tank water level status

The water level is globally represented by the height of the blue part in the tank.
 The range is calculated between the 'water level maximum' and 'water level 'minimum' settings.
 This range is divided in 10 parts. Next, the current water level is checked at which part it is. The water level under the tank is also shown.

2.10 HORNIT pressure tank failure status The status of the tank is represented by the colour of the tank.

Tank	Description/status	Tank	Description/Status
	 When it is coloured white, it is functioning properly. 		 When the tank is represented like this, the tank has a water level failure. Press the tank to go to the fault menu.
	 When the tank is represented like this, the tank has a system pressure failure. Press the tank to go to the fault menu. 		 When the tank is represented like this, the tank has system pressure failure and water level failure. Press the tank to go to the fault menu.

2.11 HORNIT pressure tank water level status

This range is divided in 10 parts. Next, the current water level is checked at which part it is. The water level under the tank is also shown.

3. User menu

The User menu contains the basic settings for the expansion system. In this menu, the user can setup the values such as: Start value, stop value, alarm thresholds for the pressure of the nitrogen blanket, total system pressure and the height of the water level. The user menu also has settings for the language and back-up.

3.1 User menu schematic for touchscreen type (Premium (plus) and Premium Plus DUO)

Figure 48. Structure of the user menu

3.2 User menu description

	General	Description
1	Sensor 2 height	This sets the height of sensor 2.
2	Sensor 4 height	This sets the height of sensor 4.

	Tank 1/2 menu	Description
1	Water level minimum	If the water level falls below this value, the control unit gives the following alarm: "F14 Water level min".
2	Increase water level	If the water level falls below this value, the control unit gives the following warning: "F17 Increase water".
3	Input pump start	If the water level falls below this value, the input pump is started.
4	Water output start	If the water level exceeds this value, the water output is opened.
5	Decrease water level	If the water level exceeds this value, the control unit gives the following warning: "F16 Reduce water".
6	Water level maximum	If the water level exceeds this value, the control unit gives the following alarm: "F15 Max water level."
7	System pressure minimum	If the nitrogen pressure falls below this value, the control gives the following alarm: "F18 Nitrogen pressure min. "
8	System pressure nominal	With this setting you set the target pressure of the pressure control. Nitrogen is removed or supplied if the pressure deviates too much.
9	System pressure maximum	If the nitrogen pressure exceeds this value, the software will generate the following error message "F19 Nitrogen Pressure Max"
10	Buffer pressure minimum	If the buffer pressure falls below this value, the control will give the following alarm: "F76 Buffer pressure min".
11	Buffer pressure maximum	If the buffer pressure exceeds this value, the control will give the following alarm: "F77 Buffer pressure max".
12	Standard settings. Make a backup	The Presscontrol makes a backup of the settings memory.
13	Standard settings. Reset	The Presscontrol resets the backup of the settings.

	Display	Description
1	Date	Current date saved in the display.
2	Time	Current time saved in the display.
3	Language	Language of the display
4	Use summer/wintertime	Indicates whether the daylight-saving time system is being used.
5	Interval time retrieval from the internet	The interval at which time is synchronized with the Internet.
6	Time zone	Time zone in which the display is located, this is necessary when retrieving the time from the internet.

4. Service menu

The service menu contains more advanced settings for the expansion system. This menu is intended for the service engineer, when the system is put into service or to make adjustments during maintenance. The service menu can be accessed by pressing the "service" button once when the touchscreen is on the main menu screen. The software will then ask for the access code of the menu. This code is only available for the service engineer.

5. Factory menu

The factory menu contains the critical software and hardware settings for the operation of the PRESS-control motherboard and the touchscreen. This menu is meant for setting the nitrogen generator when tested in the factory. The factory menu can be approached by pressing the "factory" button once when the touchscreen is on the main menu screen. The software will then ask for the access code of the factory menu. This code is only available for the service engineer.

6. Standby

When the touchscreen is in operation, it can go into standby mode to reduce the energy consumption and the wear of the hardware. The touchscreen enters standby mode when no buttons are pressed on the touchscreen for a period of 14,5 minutes and when there are no alarms or error messages. In standby mode the display turns itself off until the screen is pressed again.

Appendix B: PRESS-display

The PRESS-display is the monitoring device for reading the statuses and measured values of the system. The buttons are used to navigate and adjust the settings. Figure 49 below shows a schematic view of the PRESS-display.

Figure 49. Schematic view of Press-display

1. Buttons on the PRESS-display

Each button has a different function, some have more than one. The following table describes which function each button has.

Button	Description
Reset	 This button has a light beneath it, when it lights up, this means the following: Light on : An error or alarm has been detected; Light flashes: There is a new error or a new alarm. With this button, you can reset an error or alarm message as soon as the problem that caused the message has been solved.
Alarm	 Press the button once to view the current errors and alarm messages. Press and hold for 3 seconds to view the error and alarm log.
Prog	 From the main screen: Press the button once to enter the Service menu. An access code is required. Press and hold for 3 seconds to view the factory menu. An access code is required. Adjusting a setting in one of the menus: In the user menu: press and hold this button for 3 seconds. The setting will flash and is then adjustable. In the service menu and factory menu: press this button once briefly. The setting will flash and is then adjustable.
Info	 Press this button once briefly to view the service information screen. Press and hold for 3 seconds to view the factory information screen.
Esc	 Press this button once briefly, in one of the menus or information screens, to go back one screen and then return to the main screen. Press this button once briefly while adjusting a setting. The adjustment will be cancelled.
+	 Press this button once briefly in one of the menus to select the next screen. Press this button when setting a value to increase the value.
-	 Press this button once briefly in one of the menus to select the previous screen. Press this button when setting a value to decrease the value.

2. Menu structure and access

The PRESS-display software has a specific structure that is described in this chapter. The structure consists of 3 levels and a set of menus for each level. The levels in the software are like user levels. The levels are called: user menu, service menu and factory menu. In addition to these menus, there are also information screens, i.e.: main screen, alarm screen and information screen. The structure of the levels, menus and information screens are shown in the image below. This image also shows how to reach each menu or screen. This is applicable for the BASIC systems.

Figure 1. Menu structure of PRESS-display software

3. User Menu

The user menu contains all the basic settings for the expansion system. In this menu, the user can set values such as; start values, stop values, alarm values for nitrogen blanket pressure, total system pressure and water level. The user menu also contains language and backup settings. There are some differences in the software between the types of PRESS-controls and PRESS-displays, so the user menus will also be different. Only the User Menu of the BASIC systems is described here.

3.1 User menu for the VERNIT Basic systems

Figure 50. Structure of user menu of Vernit Basic system

Des					
	Line	Description			
1	Minimum water level	If the water level drops below this value, the software will generate the alarm message "F14 minimum water level".			
2	Increase water level	If the water level drops below this value, the software will generate the error message "F17 increase water level".			
3	Reduce water level	If the water level is higher than this value, the software will generate the error message "F16 reduce water level".			
4	Water level maximum	If the water level is higher than this value, the software will generate the error message "F15 maximum water level".			
5	Nitrogen pressure minimum	If the nitrogen pressure is higher than this value, the software will generate the error message "F18 Nitrogen pressure Min.".			
6	Nitrogen pressure nominal	This setting sets the target value for the pressure of the nitrogen blanket. The pressure is increased or decreased if it deviates too much from the nominal value.			
7	Nitrogen pressure maximum	If the nitrogen pressure is higher than this value, the software will generate the error message "F19 Nitrogen pressure Max."			
8	Backup of default settings	With this setting, the software backs up all of the configured memory.			
9	Restore backup of default settings	With this setting, the software restores the configured memory that was stored as a backup.			
10	Sensor 2 Height	This setting sets the height of sensor 2. This sensor is located on the side of buffer tank 1 and measures the water level.			
11	Language	This setting allows you to set the language of the PRESS-display.			

Description of user menu settings

4. Service Information screen

This information screen contains the directly measured values from the sensors of the VERNIT or HORNIT expansion system. These are the values to which the VERNIT or HORNIT expansion system responds. These measurements can be viewed in real-time via the Service Information screen. There are no settings available in the Service Information screen that can be changed. There are differences between the PRESS-control and PRESS-display types, so there is also differences in the Service information screen. Only the Service Information screen of the BASIC systems is described here.

4.1 Service information screen for the VERNIT Basic systems

Figure 51. Structure of the service information screens for the VERNIT Basic

Description of the service information screen

	Line	Description
1.	Tank pressure	This screen shows which measured values are used to determine the pressure of the nitrogen blanket or the total system pressure. This can be a directly measured value from sensor A or B. Or it can be a calculated value based on both sensor A and sensor B depending on the factory settings.
2.	Water level in tank	This screen shows which measured values are used to determine the water level in the buffer tank. This can be a directly measured value from sensor A or B. Or it can be a calculated value based on both sensor A and sensor B depending on the factory settings.
3.	Service counter	This screen shows the current system maintenance interval counter.

5. Factory information screen

The factory information screen displays the status of all input and output signals of the PRESS-control. It indicates, for example, if a sensor measurement has been received, if an output is active, if an input is active and if nitrogen is being produced or not. There are some differences between the different types of PRESS-controls and PRESS-displays in the software, so there are also differences in the factory information screen. Only the Factory information screen of the BASIC systems is described here.

5.1 Factory information screen for the VERNIT Basic systems

Figure 52. Structure of factory information screen of VERNIT Basic

Description of factory information screen for VERNIT Basic

	Line	Descriptions
1.	Compressor	This screen displays the current time and date. It shows the amount of time that the compressor has been active.
2.	Sensors	This screen shows what each pressure sensor measures. It contains the measurements from 2 sensors.
3.	Alarm	This screen shows the status of the boiler protection. It indicates whether a signal from the 'Switch B' button on the PCB of the PRESS-control is being received and it indicates how many days the boiler protection has been switched off. It also shows the status of the alarm relay.
4.	PSA Generator	This screen indicates whether the valves for the production of nitrogen are activated. It includes the 3 different solenoid valves for the Pressure Swing Adsorption process, the compressor activation signal and the status of the sluice valve.
5.	Tank controls	This screen shows the status of the nitrogen blanket pressure control and total system pressure control. It indicates which mode is active, such as; N2 in, N2 out, Boiler and Alarm.
6.	Input info.	This screen gives an overview of all the input signals available on the PRESS-control PCB. The status of each signal is indicated by a "0" or "1".
7.	Output info.	This screen gives an overview of all the output signals available on the PRESS-control PCB. The status of each relay is indicated by a "0" or "1".

6. Service menu

The service menu contains more advanced settings for the expansion system. This menu is intended for the service technician, when the system is being commissioned or to make adjustments during maintenance. The service menu can

be accessed by pressing the progbutton once when the PRESS-display is on the main screen. The software will then ask for the menu access code. This code is only available to the service technician.

7. Factory menu

The factory menu contains the critical software and hardware settings for the operation of the PRESS-control motherboard and the PRESS-display. This menu is for setting up the nitrogen generator when it is tested at the factory.

The factory menu can be accessed by pressing the ^{Prog} button for 3 seconds when the PRESS-display is on the main menu. The software will then ask for a factory menu access code. This code is only available to the service technician.

8. Standby

When the PRESS-display is in operation, it can go into standby mode to reduce power consumption and wear and tear on the hardware. The PRESS-display goes into standby mode when no buttons are pressed on the PRESS-display for a period of 5 minutes and there are no alarms or error messages. In standby mode, the display will automatically return to the main screen.

